首页> 外文学位 >Real-time Signal Processing Techniques and Hardware Implementation for Optical Metrology
【24h】

Real-time Signal Processing Techniques and Hardware Implementation for Optical Metrology

机译:光学计量的实时信号处理技术和硬件实现

获取原文
获取原文并翻译 | 示例

摘要

Optical metrology uses characteristics of light to perform measurements. This could be in the form of calibrating the physical size of an object, measuring the distance between two objects, or measuring the displacement of two objects, to name a few. Typically, optical metrology is characterized for its high resolution and high dynamic range. However, several optical, electrical, and mechanical error sources could impact the accuracy of a given measurement. The following three error sources are studied in this research.;Data age error is the time delay and signal processing-induced phase shift of displacement interferometer measurement results, which means it cannot precisely represent the current position of the target. It becomes significant but often overlooked when there are rapid position changes, whose errors could be up to hundreds of nanometers. This research investigates the causes of this error and reports on a signal processing algorithm and its hardware implementation to compensate the data age error during real-time measurements.;Periodic error is from imperfect optical devices and frequency mixing in traditional displacement interferometer configurations. It is usually on the order of nanometers, which impacts dynamic measurement accuracy. This research presents a signal processing algorithm based on an extended Kalman filter and its FPGA implementation for on-line estimation and real-time correction of periodic error.;Straightness error is a parasitic translation along a direction perpendicular to the primary displacement axis of a linear stage, which could be coupled into other primary displacement directions of a multi-axis platform. This ultimately impacts the precision of multi-axis metrology, calibration, and manufacturing. This research presents configurations based on image registration, and two-dimensional (2D) optical knife-edge sensing to characterize 2D straightness error.
机译:光学计量学利用光的特征来执行测量。这可以是校准物体的物理尺寸,测量两个物体之间的距离或测量两个物体的位移的形式,仅举几例。通常,光学计量学以其高分辨率和高动态范围为特征。但是,一些光学,电气和机械误差源可能会影响给定测量的准确性。研究了以下三个误差源:数据年龄误差是位移干涉仪测量结果的时间延迟和信号处理引起的相移,这意味着它不能精确表示目标的当前位置。当位置快速变化时,它变得很重要,但常常被忽略,其位置误差可能高达数百纳米。这项研究调查了这种错误的原因,并报告了一种信号处理算法及其硬件实现方法,以补偿实时测量中的数据时效误差。周期性误差来自于不完善的光学设备和传统位移干涉仪配置中的混频。它通常为纳米量级,这会影响动态测量精度。本研究提出了一种基于扩展卡尔曼滤波器的信号处理算法及其FPGA实现,用于在线估计和实时校正周期性误差。直线度误差是沿垂直于线性位移轴的方向的寄生平移阶段,可以耦合到多轴平台的其他主要位移方向。这最终会影响多轴计量,校准和制造的精度。这项研究提出了基于图像配准和二维(2D)光学刀口感测的配置,以表征2D直线度误差。

著录项

  • 作者

    Wang, Chen.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Electrical engineering.;Optics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号