首页> 外文学位 >Structure-property relationships in electrospun scaffolds.
【24h】

Structure-property relationships in electrospun scaffolds.

机译:静电纺丝支架中的结构-特性关系。

获取原文
获取原文并翻译 | 示例

摘要

Electrospinning is a broadly useful manufacturing technique to create polymer fibers ranging in diameter from 20 nm to 20 microm. This size range is ideal for tissue engineering applications as these fibers can mimic the extracellular matrix found in vivo and provide suitable scaffolds for implantation in vivo or for more realistic in vitro models and diagnostics. Electrospinning is a process that involves dissolving a synthetic or natural polymer in a solvent and applying a large voltage bias, which leads to the formation of a Taylor cone and a small jet that ejects a thin stream of the polymer solution. This thin stream rapidly elongates while the solvent evaporates and solid fibers are collected on a grounded substrate. The electrospinning technique can be used to create a large number of nanofibers relatively cheaply and easily compared to other manufacturing methods used to create nanoscale features.;While electrospun scaffolds are gaining popularity for cell culture and tissue engineering applications, relatively little is understood about the relationship between macroscopic properties and microscopic properties. Researchers need to understand that the bulk properties of a specific polymer are not the same properties that a cell cultured on the surface of a nanofiber are going to experience. To further complicate this issue, electrospun scaffolds are comprised of nanofibers that can act en masse and thus the macroscopic properties are more of a function determined by fiber-fiber interaction rather than individual fiber mechanical properties.;This work strives to establish a baseline of mechanical properties for electrospun fiber scaffolds made of polycaprolactone and various blends of gelatin and relate the macroscopic tensile properties to the underlying microscopic behavior. To investigate how biological environments may affect these properties, scaffolds were subjected to various in vitro exposures and in vivo implantation and then further analyzed for mechanical behavior and microstructure changes. The conclusions from this work show that the cellular response can be influence by the properties of individual fibers, but also how these fibers interact with each other suggesting that no single method can adequately characterize electrospun scaffolds. These complex structures need to be characterized using a variety of tools and techniques at the microscopic level and the macroscopic level and then use the underlying microstructure to determine the relationships between the two levels of characterization.
机译:电纺丝是制造直径范围从20 nm到20 microm的聚合物纤维的广泛有用的制造技术。该尺寸范围是组织工程应用的理想选择,因为这些纤维可以模拟体内发现的细胞外基质,并提供适合植入体内或用于更实际的体外模型和诊断的支架。电纺丝是一种将合成或天然聚合物溶解在溶剂中并施加较大的电压偏压的过程,这导致形成泰勒锥和小的喷射流,喷射出稀薄的聚合物溶液流。当溶剂蒸发并将固体纤维收集在接地的基材上时,这种稀薄的流迅速伸长。与用于制造纳米级特征的其他制造方法相比,电纺技术可用于相对便宜且容易地制造大量纳米纤维;虽然电纺支架在细胞培养和组织工程应用中越来越受欢迎,但对这种关系的了解却很少在宏观特性和微观特性之间。研究人员需要了解,特定聚合物的整体性质与在纳米纤维表面上培养的细胞所经历的性质不同。使这个问题进一步复杂化的是,电纺支架由可以共同作用的纳米纤维组成,因此宏观性能更多地是由纤维与纤维的相互作用而不是单个纤维的机械性能决定的。这项工作旨在建立机械的基线。聚己内酯和明胶的各种混合物制成的电纺纤维支架的性能,并将宏观拉伸性能与潜在的微观行为联系起来。为了研究生物环境如何影响这些特性,对支架进行了各种体外暴露和体内植入,然后进一步分析了机械行为和微观结构变化。这项工作的结论表明,细胞反应可能受单个纤维性质的影响,但是这些纤维之间如何相互作用也表明,没有任何一种方法可以充分表征电纺支架。需要使用各种工具和技术在微观和宏观层面对这些复杂的结构进行表征,然后使用底层的微观结构来确定两个表征层次之间的关系。

著录项

  • 作者

    Johnson, Jed Kizer.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 305 p.
  • 总页数 305
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号