首页> 外文学位 >Modulation and control of a class of modular multilevel converters for high voltage direct current (HVDC) transmission systems.
【24h】

Modulation and control of a class of modular multilevel converters for high voltage direct current (HVDC) transmission systems.

机译:用于高压直流(HVDC)传输系统的一类模块化多电平转换器的调制和控制。

获取原文
获取原文并翻译 | 示例

摘要

The voltage-sourced converter (VSC) based high-voltage direct-current (HVDC) transmission technology is one of the most promising technologies for (i) expansion of the power networks for large cities and in-feeding the city centers, (ii) grid integration of renewable energy resources, i.e., hydropower, wind farms, and solar plants, (iii) long-distance bulk-power transmission, (iv) interconnection of asynchronous power grids, and (v) electrification of isolated power loads, islands, and oil and gas stations. Among the existing VSC topologies, a class of modular multilevel converters (MMCs) is the most promising topology due to its modularity and scalability. However, there are a few technical challenges associated with the control of MMCs including (i) balancing the submodule (SM) capacitor voltages at their desired values without creating unnecessary SM switching transitions and sacrificing the efficiency, (ii) reducing the circulating currents flowing through the three phases of the MMC. Although the circulating currents have no effect on the ac side of the MMC, if not properly eliminated/minimized, increase the ripple amplitude of the SM capacitor voltages, rating values of the converter components, and power losses, (iii) reducing the magnitude of the dc-line voltage/current ripple, and (iv) handling the dc-side short circuit faults. In MMC-HVDC systems, in case of a fault occurrence on the dc side, the Integrated Gate Bipolar Transistors (IGBTs) are blocked. However, the diodes provide a current path for the fault current from the ac side to the dc side until the ac circuit breakers open. Therefore, the MMC by itself does not provide dc-fault-handling capability. This research proposes a model predictive control (MPC) strategy that takes the advantage of a cost function minimization technique to address the above-mentioned challenges associated with the control of the MMCs. A discrete-time mathematical model of the MMC-HVDC system is derived and a predictive model corresponding to the discrete-time model is developed. The predictive model is used to select the best switching states of each MMC unit based on evaluation and minimization of a defined cost function associated with the control objectives of the MMC-HVDC system. Time-domain simulation studies in the PSCAD/EMTDC environment for various operating scenarios have demonstrated/validated the effectiveness and superiority of the proposed methods, as compared to the existing solutions.
机译:基于电压源转换器(VSC)的高压直流(HVDC)传输技术是(i)扩展大城市的电网和向市中心供电的最有前途的技术之一(ii)可再生能源的电网整合,例如水电,风电场和太阳能发电厂;(iii)长距离大功率输电;(iv)异步电网的互连;以及(v)隔离电力负荷,孤岛的电气化,和石油和加油站。在现有的VSC拓扑中,一类模块化多电平转换器(MMC)由于其模块化和可扩展性而成为最有前途的拓扑。但是,与MMC的控制相关的一些技术挑战包括:(i)将子模块(SM)电容器电压平衡在其期望值,而又不产生不必要的SM开关转换和牺牲效率,(ii)减少流过的循环电流MMC的三个阶段。尽管循环电流对MMC的交流侧没有影响,但如果未正确消除/最小化,则应增加SM电容器电压的纹波幅度,转换器组件的额定值以及功率损耗,(iii)减小直流线路电压/电流纹波,以及(iv)处理直流侧短路故障。在MMC-HVDC系统中,如果直流侧发生故障,则集成栅双极晶体管(IGBT)会被阻塞。但是,二极管会为故障电流提供从交流侧到直流侧的电流路径,直到交流断路器断开。因此,MMC本身不提供直流故障处理功能。这项研究提出了一种模型预测控制(MPC)策略,该策略利用成本函数最小化技术来解决与MMC控制相关的上述挑战。推导了MMC-HVDC系统的离散时间数学模型,并开发了与离散时间模型相对应的预测模型。预测模型用于基于评估和最小化与MMC-HVDC系统控制目标相关的定义成本函数,选择每个MMC单元的最佳开关状态。与现有解决方案相比,在PSCAD / EMTDC环境中针对各种操作场景的时域仿真研究已经证明/验证了所提出方法的有效性和优越性。

著录项

  • 作者

    Qin, Jiangchao.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号