首页> 外文学位 >Development and Optimization of Chemically-Active Electrospun Nanofibers for Treatment of Impaired Water Sources.
【24h】

Development and Optimization of Chemically-Active Electrospun Nanofibers for Treatment of Impaired Water Sources.

机译:化学活性电纺纳米纤维的开发和优化,用于处理受损的水源。

获取原文
获取原文并翻译 | 示例

摘要

To achieve sustainable water resources, new treatment technologies are needed that can be applied to a broad range of undesirable constituents in water over a broad range of water chemistries. In this project, nanomaterials were developed as building blocks for advanced treatment technologies through the controlled material synthesis technique of electrospinning. Electrospun nanofibers are promising materials for nano-integrated systems due to their simple tuning and production, large surface-area-to-volume ratio, and potential substrate integration to prevent incidental release into the environment.;In this work, electrospun metal oxide nanofibers were synthesized and optimized for their application in various aspects of water treatment, which include Ag-enriched TiO2 nanofibers for UV-driven photocatalytic oxidation of organic microcontaminants, Al2O3-Fe 2O3 composite nanofibers for adsorption of heavy metals, and BiVO4 nanofibers for visible light-activated photocatalytic oxidation.;TiO2 nanofibers were developed and tuned to alter morphological, dimensional and optical properties towards optimal photocatalytic performance of contaminant degradation. Electrospinning synthesis yielded nanofibers with controlled diameter, crystal phase, grain size, and band gap. Photoreactivity studies towards the model pollutant phenol showed that diameter and crystal phase composition were the two major factors in optimizing TiO2 nanofibers performance. Additionally, the introduction of Ag led to further enhancement of photoreactivity, where optimization of the composite nanofibers was tied predominantly to Ag content.;Fe2O3 nanofibers were developed and tuned to alter morphological and dimensional properties towards optimal adsorption of heavy metals. Electrospinning synthesis yielded nanofibers with controlled diameter, crystal phase, grain size, and specific surface area. Chromate adsorption isotherm studies reveal increased sorption capacity with decreased diameter of the Fe2O3 nanofibers, attributed with the increased surface area. With the addition of Al, Al2O3-Fe 2O3 composite nanofibers were produced with even greater sorption capacity due to further enhanced surface area.;BiVO4 nanofibers were developed and tuned to control morphological, dimensional and optical properties towards optimal visible-light activated photocatalytic performance. Electrospinning synthesis yielded nanofibers with controlled diameter, crystal phase, grain size, and band gap. Photoreactivity studies towards phenol showed that reactivity increased with decreased nanofiber diameter. The addition of Ag and Au co-catalysts enhanced photoreactivity of the BiVO4 nanofibers, outperforming TiO2 nanomaterials under visible light irradiation.
机译:为了获得可持续的水资源,需要新的处理技术,这些技术可以应用于广泛的水化学领域中水中的各种不良成分。在该项目中,通过静电纺丝的受控材料合成技术,将纳米材料开发为先进处理技术的基础。电纺纳米纤维由于其简单的调整和生产,大的表面积/体积比以及潜在的基材整合性(可防止偶然释放到环境中)而成为纳米集成系统的有前途的材料。合成并针对其在水处理各个方面的应用进行了优化,包括富集Ag的TiO2纳米纤维,用于紫外线驱动的有机微污染物的光催化氧化; Al2O3-Fe 2O3复合纳米纤维,用于吸附重金属; BiVO4纳米纤维,用于可见光活化开发并调整了TiO2纳米纤维,以改变形态,尺寸和光学性能,以实现污染物降解的最佳光催化性能。电纺合成产生具有受控直径,晶相,晶粒尺寸和带隙的纳米纤维。对模型污染物苯酚的光反应性研究表明,直径和晶相组成是优化TiO2纳米纤维性能的两个主要因素。另外,Ag的引入导致光反应性的进一步增强,其中复合纳米纤维的优化主要与Ag含量相关。; Fe 2 O 3纳米纤维被开发和调整以改变形态和尺寸特性,以最佳地吸附重金属。电纺合成产生具有受控的直径,晶相,晶粒尺寸和比表面积的纳米纤维。铬酸盐吸附等温线研究表明,随着Fe2O3纳米纤维直径的减小,吸附能力增加,这归因于表面积的增加。随着铝的加入,由于表面积的进一步增加,Al2O3-Fe 2O3复合纳米纤维的吸附能力进一步提高。BiVO4纳米纤维的开发和调整可控制其形态,尺寸和光学性能,以实现最佳的可见光活化光催化性能。电纺合成产生具有受控直径,晶相,晶粒尺寸和带隙的纳米纤维。对苯酚的光反应性研究表明,反应性随纳米纤维直径的减小而增加。 Ag和Au助催化剂的添加增强了BiVO4纳米纤维的光反应性,在可见光照射下性能优于TiO2纳米材料。

著录项

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Engineering Environmental.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号