首页> 外文学位 >Synthesis and processing of materials for direct thermal-to-electric energy conversion and storage.
【24h】

Synthesis and processing of materials for direct thermal-to-electric energy conversion and storage.

机译:用于直接热电能量转换和存储的材料的合成和加工。

获取原文
获取原文并翻译 | 示例

摘要

Currently, fossil fuels are the primary source of energy. Mechanical heat engines convert the chemical potential energy in fossil fuels to useful electrical energy through combustion; a relatively low efficiency process that generates carbon dioxide. This practice has led to a significant increase in carbon dioxide emissions and is contributing to climate change. However, not all heat engines are mechanical. Alternative energy generation technologies to mechanical heat engines are known, yet underutilized. Thermoelectric generators are solid-state devices originally developed by NASA to power deep space spacecraft, which can also convert heat into electricity but without any moving parts. Similar to their mechanical counterparts, any heat source, including the burning of fossil fuels, can be used. However, clean heat sources, such as concentrated solar, can alternatively be used. Since the energy sources for many of the alternative energy technologies is intermittent, including concentrated solar for thermoelectric devices, load matching is difficult or impossible and an energy storage technology is needed in addition to the energy conversion technology. This increases the overall cost and complexity of the systems since two devices are required and represents a significant barrier for mass adoption of an alternative energy technology. However, it is possible to convert heat energy to electrical energy and store excess charge for use at a later time when the demand increases, in a single device. One such of a device is a thermogalvanic generator and is the electrochemical analog of electronic thermoelectric devices. Essentially, a thermogalvanic device represents the combination of thermoelectric and galvanic systems. As such, the rich history of strategies developed by both the thermoelectric community to better the performance of thermoelectric devices and by the electrochemical community to better traditional galvanic devices (i.e. batteries) can be applied to thermogalvanic devices. Although thermogalvanic devices are known, there has been little exploration into the use of thermogalvanic devices for power generation and energy storage.;First, this work formalizes the energy problem and introduces the operating principles of thermoelectric, galvanic, and thermogalvanic devices. Second, oxide based thermoelectric materials are explored from a synthetic and processing standpoint. Out of necessity, a new synthetic technique was invented and a novel hot-press technique was developed. Third, a solid Li-ion conducting electrolyte, based on the garnet crystal structure, is identified for the use in a thermogalvanic cell. In order to better understand the conductivity behavior, an in-depth exploration into the variables that control the ionic transport is performed on the electrolyte. Third, a thermogalvanic cell is constructed using this garnet based Li-ion conducting solid electrolyte and the first demonstration of such a cell is presented. Finally, strategies to improve the performance of thermogalvanic cells based on garnet type solid electrolytes are outlined for future work.;The purpose of this work is to use an interdisciplinary approach to marry together the electrochemistry of galvanic systems with the strategies used to better semiconductor based thermoelectric materials and ceramics processing techniques to fabricate these systems. This dissertation will explore the interplay of these areas.
机译:当前,化石燃料是主要的能源。机械热机通过燃烧将化石燃料中的化学势能转化为有用的电能;产生二氧化碳的效率相对较低的过程。这种做法导致二氧化碳排放量大量增加,并助长了气候变化。但是,并非所有热机都是机械的。机械热机的替代能源生产技术是已知的,但尚未得到充分利用。热电发电机是由美国国家航空航天局最初开发的固态设备,用于为太空飞船提供动力,该飞船还可以将热量转化为电能,但没有任何活动部件。与机械类似,可以使用任何热源,包括燃烧化石燃料。但是,也可以使用清洁的热源,例如聚光太阳能。由于许多替代能源技术的能源都是间歇性的,包括用于热电设备的聚光太阳能,因此负载匹配困难或不可能,除能量转换技术外还需要一种储能技术。由于需要两个设备,因此增加了系统的总体成本和复杂性,并且对大规模采用替代能源技术构成了重大障碍。但是,可以在单个设备中将热能转换为电能并存储多余的电荷,以便以后需求增加时使用。一种这样的设备是热电发电机,并且是电子热电设备的电化学类似物。本质上,热电设备代表热电和电流系统的组合。这样,由热电社区开发以改善热电设备的性能以及由电化学社区开发更好的传统电设备(即电池)的策略的丰富历史可以应用于热电设备。尽管热电装置是已知的,但很少有关于将热电装置用于发电和能量存储的探索。首先,这项工作使能源问题正式化,并介绍了热电,电和热电装置的工作原理。其次,从合成和加工的角度出发,探索基于氧化物的热电材料。出于必要,发明了新的合成技术,并开发了新的热压技术。第三,基于石榴石晶体结构的固体锂离子导电电解质被确定用于热原电池。为了更好地理解电导率行为,对电解液中控制离子迁移的变量进行了深入探索。第三,使用这种基于石榴石的锂离子传导固体电解质构建热原电池,并首次展示了这种电池。最后,概述了改进基于石榴石型固体电解质的热原电池性能的策略,以供将来工作之用;该工作的目的是利用跨学科方法将原电池系统的电化学与更好地基于半导体的策略结合起来热电材料和陶瓷加工技术来制造这些系统。本文将探讨这些领域的相互作用。

著录项

  • 作者

    Thompson, Travis.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Materials Science.;Chemistry Inorganic.;Energy.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号