首页> 外文学位 >Mechanistic understanding of biogeochemical transformations of trace elements in contaminated minewaste materials under reduced conditions.
【24h】

Mechanistic understanding of biogeochemical transformations of trace elements in contaminated minewaste materials under reduced conditions.

机译:在还原条件下对受污染的矿山废料中微量元素的生物地球化学转化的机理理解。

获取原文
获取原文并翻译 | 示例

摘要

The milling and mining operations of metal ores are one of the major sources of heavy metal contamination at earth's surface. Due to historic mining activities conducted in the Tri-State mining district, large area of land covered with mine waste, and soils enriched with lead (Pb), zinc (Zn) and cadmium (Cd) remain void of vegetation influencing ecosystem and human health. It has been hypothesized that if these minewaste materials are disposed of in the flooded subsidence pits; metals can be transformed into their sulfide forms under reduced conditions limiting their mobility, and toxicity. These mine waste materials are high in pH, low in organic carbon (OC) and sulfur (S). The objective of this study was to examine the effect of OC and S addition on the biogeochemical transformations of Pb, Zn and Cd in submerged mine waste containing microcosms. Advanced molecular spectroscopic and microbiological techniques were used to obtain a detail, mechanistic, and molecular scale understanding of the effect of natural and stimulated redox conditions on biogeochemical transformation and dynamics of Pb, Zn and Cd essential for designing effective remediation and mitigation strategies.;The results obtained from these column studies indicated that Pb, Zn and Cd were effectively immobilized upon medium (119-day) and long-term (252-day) submergence regardless of treatment. The OC plus S treatment enhanced sulfide formation as supported by scanning electron microscopy- energy dispersive X-ray technique, and synchrotron based bulk-, and micro-X-ray fluorescence and absorption spectroscopy analyses. Microbial community structure changed with OC and S addition with the enhancement sulfur reducing bacteria genes (dsrA/B), and decreased metal resistance genes over time. The long-term submergence of existing mine tailings with OC plus S addition reduced trace metals mobility most likely through dissimilatory sulfate reduction under stimulated reduced conditions. Colloidal assisted metal transportation (<1% of both Pb and Cd) occurred during initial submergence. Retention filters are suggested to avoid colloidal metal transport in order to meet the maximum concentration limit for Pb and Cd in surface and groundwater.;This research enhances our understanding of the redox processes associated with the sequestration of non-redox sensitive metals through dissimilatory reduction of sulfates in mine waste materials and/or waste water and provides regulators with useful scientific evidence for optimizing remediation goals.
机译:金属矿石的研磨和开采操作是地球表面重金属污染的主要来源之一。由于在三州矿区开展了具有历史意义的采矿活动,大面积土地覆盖了矿山废物,富含铅(Pb),锌(Zn)和镉(Cd)的土壤仍然没有影响生态系统和人类健康的植被。据推测,如果将这些矿物废料处置在淹没的沉陷坑中;金属可以在减少的条件下转化为它们的硫化物形式,从而限制了它们的迁移率和毒性。这些矿山废料的pH值高,有机碳(OC)和硫(S)低。这项研究的目的是研究OC和S的添加对含有微观世界的矿山废渣中Pb,Zn和Cd的生物地球化学转化的影响。先进的分子光谱和微生物技术用于获得详细,机理和分子规模的理解,了解自然和受激氧化还原条件对生物地球化学转化的影响以及Pb,Zn和Cd动力学,这对于设计有效的补救和缓解策略至关重要。从这些柱研究中获得的结果表明,无论处理如何,在中等(119天)和长期(252天)浸没后,Pb,Zn和Cd均可有效固定。 OC + S处理增强了硫化物的形成,这得益于扫描电子显微镜,能量色散X射线技术以及基于同步加速器的体,微X射线荧光和吸收光谱分析。随着OC和S的增加,微生物群落结构发生改变,硫还原细菌基因(dsrA / B)增强,金属抗性基因随时间降低。现有矿山尾矿中长期添加OC和S会降低其痕量金属的迁移率,这很可能是由于在受激还原条件下硫酸盐的异化还原所致。胶体辅助金属运输(铅和镉的<1%)发生在最初的浸没过程中。建议保留过滤器以避免胶体金属的运移,以达到地表水和地下水中铅和镉的最大浓度极限。这项研究通过异化还原铁的方法增强了我们对与非氧化还原敏感金属螯合相关的氧化还原过程的理解。矿山废料和/或废水中的硫酸盐,为监管者提供了优化修复目标的有用科学依据。

著录项

  • 作者

    Karna, Ranju Rani.;

  • 作者单位

    Kansas State University.;

  • 授予单位 Kansas State University.;
  • 学科 Agriculture Soil Science.;Environmental Sciences.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号