首页> 外文学位 >Improving Tools for Bioorthogonal Chemistry.
【24h】

Improving Tools for Bioorthogonal Chemistry.

机译:生物正交化学的改进工具。

获取原文
获取原文并翻译 | 示例

摘要

The ability to study biomolecules within their naturally occurring context is often complicated by the complexity of biological systems. To overcome this obstacle, methods to selectively tag the biomolecule of interest with a fluorophore or affinity handle have been developed; once tagged, the desired biomolecule has a unique signal that allows it to be identified and studied within the complex biological setting. Ideally, these tags are small and non-perturbing so as not to modify the behavior of the biomolecule. However, while these design rules for bioorthogonal reagents seem simple, translating the rules into useful tools is challenging.;In the first chapter of this dissertation, I outline current methods to label biomolecules with small tags. I begin by describing genetically-encoded tags that are useful for protein-based studies. Next, the field of bioorthogonal chemistry and the ability to tag non-proteinaceous biomolecules is introduced. An overview of various chemical reporters used for live cell- and whole organism- studies is presented, and the future requirements for the field are discussed.;In Chapter 2, I describe a novel class of molecule for azide-based bioorthogonal tagging, the thiacycloalkyne. By introducing an endocyclic sulfur atom, the strain of the cycloalkynes can be fine-tuned. Taking advantage of this strategy, a previously reported thiacycloheptyne, TMTH, is shown to be exceptionally reactive with azides and to have promising qualities as a bioorthogonal reagent. In Chapter 3, I extend the endocyclic large heteroatom strategy to the design of dibenzoselenacycloheptynes. However, while these compounds can be trapped with azides in situ, they behave as triplet diradicals in the absence of a trap.;In Chapter 4, I focus on the development of a new strategy to bioorthogonally label glycans on specific cell-types. By creating trivalent reagents that comprise of a targeting aptamer, an azide-reactive cyclooctyne, and a fluorophore, I show that cell-selective glycan labeling can be achieved. These simple-to-use, modular reagents will be helpful in studying the geneses and outcomes of cell-specific glycosylation changes.;Finally, in Chapter 5, I present work towards the development of a novel method for single-step, non-toxic protein tagging. This method is based on the reaction between 1,2-aminothiols and cyanobenzothiazole, which has previously been shown to be selective, bio-friendly, and fast. Both phage display and rational peptide design are implemented in attempts to find a short peptide tag that can covalently react with cyanobenzothiazole, but only high-affinity binding and reversible reactions are achieved.
机译:在生物分子天然存在的背景下研究生物分子的能力通常由于生物系统的复杂性而变得复杂。为了克服这一障碍,已经开发了用荧光团或亲和柄选择性标记目标生物分子的方法。一旦被标记,所需的生物分子就会具有独特的信号,从而可以在复杂的生物环境中对其进行识别和研究。理想情况下,这些标签很小且不会打扰,以免改变生物分子的行为。然而,尽管这些生物正交试剂的设计规则看起来很简单,但将这些规则转化为有用的工具仍具有挑战性。在本论文的第一章中,我概述了目前用小标签标记生物分子的方法。首先,我将介绍对基于蛋白质的研究有用的基因编码标签。接下来,介绍了生物正交化学领域以及标记非蛋白质生物分子的能力。介绍了用于活细胞和整个生物研究的各种化学报告物的概述,并讨论了该领域的未来要求。在第二章中,我描述了用于基于叠氮化物的生物正交标记的一类新型分子,噻环炔。通过引入环内硫原子,可以对环炔的应变进行微调。利用这种策略,先前报道的噻环庚炔TMTH与叠氮化物具有极强的反应性,并且具有作为生物正交试剂的良好前景。在第三章中,我将内环大杂原子策略扩展到二苯并硒杂环庚烷的设计。然而,尽管这些化合物可以被叠氮化物原位捕获,但在没有陷阱的情况下,它们的作用就像三重双自由基。在第4章中,我着重于开发一种在特定细胞类型上生物正交标记聚糖的新策略。通过创建包含靶向适体,叠氮化物反应性环辛炔和荧光团的三价试剂,我证明可以实现细胞选择性聚糖标记。这些简单易用的模块化试剂将有助于研究细胞特异性糖基化变化的发生和结果。最后,在第5章中,我将致力于开发一种新的单步无毒方法蛋白质标签。该方法基于1,2-氨基硫醇与氰基苯并噻唑之间的反应,该反应先前已被证明具有选择性,生物友好性和快速性。实施噬菌体展示和合理的肽设计都是为了试图找到可以与氰基苯并噻唑共价反应的短肽标签,但仅实现了高亲和力结合和可逆反应。

著录项

  • 作者

    de Almeida, Gabriela.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Chemistry Biochemistry.;Chemistry Physical.;Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 261 p.
  • 总页数 261
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号