首页> 外文学位 >Effects of Fuel Composition on Combustion Stability and NO X Emissions for Traditional and Alternative Jet Fuels.
【24h】

Effects of Fuel Composition on Combustion Stability and NO X Emissions for Traditional and Alternative Jet Fuels.

机译:燃料成分对传统和代用喷气燃料的燃烧稳定性和NO X排放的影响。

获取原文
获取原文并翻译 | 示例

摘要

Synthetic jet fuels are studied to help understand their viability as alternatives to traditionally derived jet fuel. Two combustion parameters -- flame stability and NOX emissions -- are used to compare these fuels through experiments and models. At its core, this is a fuels study comparing how chemical makeup and behavior relate.;Six 'real', complex fuels are studied in this work -- four are synthetic from alternative sources and two are traditional from petroleum sources. Two of the synthetic fuels are derived from natural gas and coal via the Fischer Tropsch catalytic process. The other two are derived from Camelina oil and tallow via hydroprocessing. The traditional military jet fuel, JP8, is used as a baseline as it is derived from petroleum. The sixth fuel is derived from petroleum and is used to study the effects of aromatic content on the synthetic fuels. The synthetic fuels lack aromatic compounds, which are an important class of hydrocarbons necessary for fuel handling systems to function properly.;Several single-component fuels are studied (through models and/or experiments) to facilitate interpretation and understanding.;The flame stability study first compares all the 'real', complex fuels for blowout. A toroidal stirred reactor is used to try and isolate temperature and chemical effects.;The modeling study of blowout in the toroidal reactor is the key to understanding any fuel-based differences in blowout behavior. A detailed, reacting CFD model of methane is used to understand how the reactor stabilizes the flame and how that changes as the reactor approaches blowout. A 22 species reduced form of GRI 3.0 is used to model methane chemistry.;The knowledge of the radical species role is utilized to investigate the differences between a highly aliphatic fuel (surrogated by iso-octane) and a highly aromatic fuel (surrogated by toluene). A perfectly stirred reactor model is used to study the chemical kinetic pathways for these fuels near blowout. The differences in flame stabilization can be attributed to the rate at which these fuels are attacked and destroyed by radical species. The slow disintegration of the aromatic rings reduces the radical pool available for chain-initiating and chain-branching, which ultimately leads to an earlier blowout.;The NOX study compares JP8, the aromatic additive, the synthetic fuels with and without an aromatic additive, and an aromatic surrogate (1,3,5-trimethylbenzene). A jet stirred reactor is used to try and isolate temperature and chemical effects. The reactor has a volume of 15.8 mL and a residence time of approximately 2.5 ms. The fuel flow rate (hence equivalence ratio) is adjusted to achieve nominally consistent temperatures of 1800, 1850, and 1900K. Small oscillations in fuel flow rate cause the data to appear in bands, which facilitated Arrhenius-type NOX-temperature correlations for direct comparison between fuels. The fuel comparisons are somewhat inconsistent, especially when the aromatic fuel is blended into the synthetic fuels. In general, the aromatic surrogate (1,3,5-trimethylbenzene) produces the most NOX, followed by JP8. The synthetic fuels (without aromatic additive) are always in the same ranking order for NOX production (HP Camelina > FT Coal > FT Natural Gas > HP Tallow). The aromatic additive ranks differently based on the temperature, which appears to indicate that some of the differences in NOX formation are due to the Zeldovich NOX formation pathway. The aromatic additive increases NOX for the HP Tallow and decreases NOX for the FT Coal. The aromatic additive causes increased NOX at low temperatures but decreases NOX at high temperatures for the HP Camelina and FT Natural Gas.;A single perfectly stirred reactor model is used with several chemical kinetic mechanisms to study the effects of fuel (and fuel class) on NO X formation. The 27 unique NOX formation reactions from GRI 3.0 are added to published mechanisms for jet fuel surrogates. The investigation first looked at iso-octane and toluene and found that toluene produces more NOX because of a larger pool of O radical. The O radical concentration was lower for iso-octane because of an increased concentration of methyl (CH 3) radical that consumes O radical readily. Several surrogate fuels (iso-octane, toluene, propylcyclohexane, n-octane, and 1,3,5-trimethylbenzene) are modeled to look for differences in NOX production. The trend (increased CH3 → decreased O → decreased NOX) is consistently true for all surrogate fuels with multiple kinetic mechanisms. It appears that the manner in which the fuel disintegrates and creates methyl radical is an extremely important aspect of how much NOX a fuel will produce. (Abstract shortened by UMI.).
机译:对合成喷气燃料进行了研究,以帮助理解其作为传统衍生喷气燃料的替代品的可行性。两种燃烧参数-火焰稳定性和NOX排放-用于通过实验和模型比较这些燃料。它的核心是比较化学成分和行为之间关系的燃料研究。该工作研究了六种“真实”的复杂燃料-四种是从替代来源合成的,两种是传统的石油来源。两种合成燃料通过费托催化工艺从天然气和煤炭中提取。另外两种是通过加氢处理从山茶油和牛脂中提取的。传统的军用喷气燃料JP8是从石油中提取的,因此被用作基准。第六种燃料是从石油中提取的,用于研究芳烃含量对合成燃料的影响。合成燃料缺少芳香族化合物,芳香族化合物是使燃料处理系统正常运行所必需的一类重要的碳氢化合物。;对几种单组分燃料进行了研究(通过模型和/或实验),以便于解释和理解。首先比较所有“实际”,复杂的井喷燃料。环形搅拌反应器用于尝试隔离温度和化学效应。环形反应器中的井喷模型研究是了解基于燃料的井喷行为差异的关键。使用详细的反应性CFD甲烷模型来了解反应堆如何稳定火焰以及随着反应堆接近井喷而变化。使用22种还原形式的GRI 3.0来模拟甲烷化学模型;利用自由基物种作用的知识来研究高脂族燃料(异辛烷替代)和高芳族燃料(甲苯替代)之间的差异)。完美搅拌的反应器模型用于研究井喷附近这些燃料的化学动力学路径。火焰稳定性方面的差异可以归因于这些燃料被自由基入侵和破坏的速率。芳香环的缓慢分解会减少可用于链引发和链分支的自由基库,最终导致更早的爆裂。NOX研究比较了JP8,芳香族添加剂,有或没有芳香族添加剂的合成燃料,和芳族替代物(1,3,5-三甲基苯)。喷射搅拌反应器用于尝试分离温度和化学作用。反应器的体积为15.8 mL,停留时间约为2.5 ms。调整燃料流速(因此当量比)以实现名义上一致的1800、1850和1900K温度。燃油流量的小幅波动会导致数据出现在条带中,从而促进了Arrhenius型NOX与温度之间的关系,以便直接比较燃油。燃料的比较有些不一致,尤其是当芳香族燃料混入合成燃料时。通常,芳族替代物(1,3,5-三甲基苯)产生的NOX最多,其次是JP8。合成燃料(不含芳族添加剂)对于NOX的生产始终处于相同的排名顺序(HP Camelina> FT煤炭> FT天然气> HP牛脂)。芳族添加剂根据温度的排名不同,这似乎表明NOX形成过程中的某些差异是由于Zeldovich NOX形成途径所致。芳族添加剂会增加HP牛油的NOX含量,而使FT煤的NOX含量降低。芳烃添加剂会导致HP Camelina和FT天然气在低温下增加NOX,但在高温下降低NOX 。;一个完全搅拌的反应器模型与几种化学动力学机制一起用于研究燃料(和燃料类别)对燃料的影响。 NO X形成。来自GRI 3.0的27种独特的NOX形成反应被添加到了航空燃料替代物的已公开机制中。研究首先考察了异辛烷和甲苯,发现由于O自由基的增加,甲苯会产生更多的NOX。异辛烷的O自由基浓度较低,因为甲基(CH 3)自由基的浓度增加,容易消耗O自由基。对几种替代燃料(异辛烷,甲苯,丙基环己烷,正辛烷和1,3,5-三甲基苯)进行建模,以寻找NOX产生量的差异。对于具有多种动力学机理的所有代用燃料,趋势(CH3增加→O减少→NOX减少)始终是正确的。看来,燃料分解并产生甲基自由基的方式是燃料将产生多少NOX的极其重要的方面。 (摘要由UMI缩短。)。

著录项

  • 作者

    Vijlee, Shazib Z.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Mechanical.;Alternative Energy.;Energy.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号