首页> 外文学位 >A systematic study of the process-structure relationship for building polymer interphase regions in carbon nanotube composites.
【24h】

A systematic study of the process-structure relationship for building polymer interphase regions in carbon nanotube composites.

机译:对建立碳纳米管复合材料中聚合物相间区域的过程-结构关系的系统研究。

获取原文
获取原文并翻译 | 示例

摘要

As the world's demands for new high-performance materials continuously grow, reinforcing polymer materials with carbon nanotubes (CNT) to produce lightweight composites with high properties has been pursued since their discovery. However, to date composites with the anticipated superior properties have not been achieved yet. This is mainly due to the lack of fundamental understanding regarding processing these materials as well as manipulating the nano-scale assemblies, which would dictate the desired macroscopic performance.;This dissertation work focuses on understanding the development of interfacial zones in polymer/CNT composites, which is necessary for producing mechanically outstanding composite materials. Highly crystalline and confined interphase structure plays a significant role for (i) interfacial stress transfer (affecting the overall composite properties), and (ii) structural evolution during heat treatment (enabling low-temperature graphitization of polyacrylonitrile (PAN)). For this reason, control of the structural development in the interphase regions during composite processing is a key to success.;Good nanotube dispersion in terms of both bundle exfoliation and length preservation is a prerequisite for polymer-CNT interfacial interactions. Nano-scale assembly via polymer-CNT epitaxy has enabled extended-chain templating of flexible backbone polymers (i.e., PAN and polyvinyl alcohol (PVA)), which is the most desired conformation needed for high-modulus high-strength fibers. Slight variations in the crystallization parameters result in distinctly different morphologies of the same polymer formed on CNT at the interphase, including folded-chain crystals and amorphous globules. Processing methods for polymer/CNT materials without precise controls will lead to heterogeneity in the interphase morphologies, if any, which can result in low composite properties. Therefore, fundamental understanding of polymer interphase growth is conducted in the present study to resolve these issues. Toward this effort, the quiescent homogeneous crystallization as well as the heterogeneous crystallization in dilute PAN/CNT solutions/dispersions under shear is investigated. The crystallization temperature, degree of undercooling, polymer/CNT concentration, flow field, and solvent removal mechanism are tailored for the optimal interphase growth. Going beyond interfacial crystallization process-structure studies, bulk-free PAN/CNT composites (i.e., consisting only of interphase PAN and CNT) are fabricated by incorporating the crystallization procedures into the processing. These materials are subsequently characterized for the structure and morphology, and assessed for the mechanical and thermal properties to derive the structure-property relationship.;Manipulating nano-structures does not only enhance the mechanical properties of the composites, but also largely affects the structural evolutions during thermal treatments. Low-temperature (up to 1100 °C) graphitization of the interphase PAN has been successfully performed for the bulk-free PAN/CNT composite precursors, which are intended to be used as the next-generation carbon precursor. At a much lower temperature (~1500 °C lower than that for commercial graphitization), graphite was formed predominantly in the structure. This is attributed to the novel-design of the interfacial structure in the precursor. The carbonized structure is analyzed using electron microscopy and spectroscopy. It is found that different types of CNT interact to various extents with the same PAN polymer during heat treatments. Therefore, coupling both the precursor processing and heat treatment is necessary to achieve the optimal carbon structure in the final composites.
机译:随着世界对新型高性能材料的需求不断增长,自发现碳纳米管(CNT)以来,人们一直在寻求用碳纳米管(CNT)增强聚合物材料以生产具有高性能的轻型复合材料的方法。然而,迄今为止,尚未实现具有预期优异性能的复合材料。这主要是由于缺乏对这些材料的加工以及操纵纳米级组件的基本了解,这将决定所需的宏观性能。本论文的工作重点是了解聚合物/ CNT复合材料中界面区域的发展,这是生产机械性能优异的复合材料所必需的。高度结晶且受限制的相间结构对于(i)界面应力传递(影响整体复合性能)和(ii)热处理过程中的结构演变(实现聚丙烯腈(PAN)的低温石墨化)起着重要作用。因此,在复合加工过程中控制相间区域的结构发展是成功的关键。在束剥落和长度保持方面,良好的纳米管分散性是聚合物-CNT界面相互作用的先决条件。通过聚合物-CNT外延进行的纳米级组装已实现了柔性骨架聚合物(即PAN和聚乙烯醇(PVA))的扩展链模板化,这是高模量高强度纤维最需要的构象。结晶参数的轻微变化会导致在相间在CNT上形成的同一聚合物的形态明显不同,包括折叠链晶体和无定形球。没有精确控制的聚合物/ CNT材料的加工方法将导致相间形态的不均匀性(如果有),从而导致复合材料性能低下。因此,在本研究中进行了聚合物界面生长的基本了解,以解决这些问题。为此,研究了剪切条件下在PAN / CNT稀溶液/分散体中的静态均相结晶以及非均相结晶。结晶温度,过冷度,聚合物/ CNT浓度,流场和溶剂去除机理经过了调整,以实现最佳的相间生长。通过界面结晶过程的结构研究,无结晶的PAN / CNT复合材料(即仅由相间PAN和CNT组成)是通过将结晶过程纳入工艺来制造的。随后对这些材料的结构和形态进行表征,并评估其机械和热性能,以得出结构-性能关系。操纵纳米结构不仅会增强复合材料的机械性能,而且还会极大地影响结构的演变在热处理过程中。对于无块体PAN / CNT复合材料前驱体,已经成功进行了相间PAN的低温(最高​​1100°C)石墨化处理,该前体旨在用作下一代碳前驱体。在低得多的温度下(比商用石墨化工艺低约1500°C),主要在结构中形成了石墨。这归因于前体中界面结构的新颖设计。使用电子显微镜和光谱法分析碳化的结构。发现在热处理期间,不同类型的CNT与相同的PAN聚合物在不同程度上相互作用。因此,必须结合前体处理和热处理,以在最终复合材料中获得最佳碳结构。

著录项

  • 作者

    Zhang, Yiying.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号