首页> 外文学位 >High-fidelity numerical simulations of compressible turbulence and mixing generated by hydrodynamic instabilities.
【24h】

High-fidelity numerical simulations of compressible turbulence and mixing generated by hydrodynamic instabilities.

机译:由水动力不稳定性产生的可压缩湍流和混合的高保真数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

High-speed flows are prone to hydrodynamic interfacial instabilities that evolve to turbulence, thereby intensely mixing different fluids and dissipating energy. The lack of knowledge of these phenomena has impeded progress in a variety of disciplines. In science, a full understanding of mixing between heavy and light elements after the collapse of a supernova and between adjacent layers of different density in geophysical (atmospheric and oceanic) flows remains lacking. In engineering, the inability to achieve ignition in inertial fusion and efficient combustion constitute further examples of this lack of basic understanding of turbulent mixing. In this work, my goal is to develop accurate and efficient numerical schemes and employ them to study compressible turbulence and mixing generated by interactions between shocked (Richtmyer-Meshkov) and accelerated (Rayleigh-Taylor) interfaces, which play important roles in high-energy-density physics environments.;To accomplish my goal, a hybrid high-order central/discontinuity-capturing finite difference scheme is first presented. The underlying principle is that, to accurately and efficiently represent both broadband motions and discontinuities, non-dissipative methods are used where the solution is smooth, while the more expensive and dissipative capturing schemes are applied near discontinuous regions. Thus, an accurate numerical sensor is developed to discriminate between smooth regions, shocks and material discontinuities, which all require a different treatment. The interface capturing approach is extended to central differences, such that smooth distributions of varying specific heats ratio can be simulated without generating spurious pressure oscillations. I verified and validated this approach against a stringent suite of problems including shocks, interfaces, turbulence and two-dimensional single-mode Richtmyer-Meshkov instability simulations. The three-dimensional code is shown to scale well up to 4000 cores.;Using a novel set-up, I perform direct numerical simulations of freely decaying turbulent multi-material mixing starting from an unperturbed material interface between two fluids in a pre-existing isotropic turbulent velocity field in the presence and absence of gravity. In the absence of gravity, the energy dissipation rate is matched in each fluid, such that anisotropy in the initial set-up solely comes from the density gradient. At large scales, the mixing region grows self-similarly after an initial transient period; a one-dimensional turbulence diffusion model in conjunction with Prandtl's mixing length theory is applied to describe the growth of the mixing region. In this regime, the growth of the mixing regions scales as time to the power of 2/7 for Batchelor turbulence, as predicted by energy budget arguments for large Reynolds numbers. At small scales, flow isotropy and intermittency are measured. Results suggest that a large density ratio between the two fluids is required to produce anisotropy at the Taylor microscale, while the flow remains isotropic at the dissipation (Kolmogorov) scales.;Having identified the role of density gradient alone, I revisit the problem in the presence of gravity in a Rayleigh-Taylor unstable configuration. Now, the baroclinic vorticity due to the gravitational field provides energy that drives the initially decaying turbulent field. Flow dynamics are characterized by the two important competing time scales of the problem, corresponding to the decay of the initial turbulent field and the Rayleigh-Taylor development. The resulting turbulence is found to be anisotropic across all scales. The velocity field is highly intermittent at the bubble and spike fronts.
机译:高速流动易于产生流体动力学界面不稳定性,并演变成湍流,从而强烈混合各种流体并耗散能量。缺乏对这些现象的了解阻碍了各种学科的发展。在科学上,仍然缺乏对超新星崩溃后重元素和轻元素之间以及地球物理(大气和海洋)流中密度不同的相邻层之间混合的全面了解。在工程中,惯性聚变无法实现点火和有效燃烧构成了对湍流混合缺乏基本了解的又一例子。在这项工作中,我的目标是开发准确而有效的数值方案,并将其用于研究由于冲击(Richtmyer-Meshkov)和加速(Rayleigh-Taylor)界面之间的相互作用而产生的可压缩湍流和混合,这在高能中起着重要作用密度物理环境。为了实现我的目标,首先提出了混合高阶中心/不连续性捕获有限差分方案。基本原理是,为了准确有效地表示宽带运动和不连续性,在解决方案平滑的情况下使用非耗散方法,而在不连续区域附近应用更昂贵且耗散的捕获方案。因此,开发了一种精确的数字传感器来区分所有需要不同处理的平滑区域,冲击和材料不连续。界面捕获方法扩展到了中心差异,因此可以模拟变化的比热比的平滑分布,而不会产生伪压力振荡。我针对一系列严格的问题(包括冲击,界面,湍流和二维单模Richtmyer-Meshkov不稳定性仿真)进行了验证和验证。三维代码显示可扩展至多达4000个核。;使用新颖的设置,我从存在的两种流体之间的不受扰动的材料界面开始,对自由衰减的湍流多材料混合进行了直接数值模拟在存在和不存在重力的情况下的各向同性湍流场。在没有重力的情况下,每种流体的能量耗散率是匹配的,因此初始设置中的各向异性仅来自密度梯度。在初始过渡阶段之后,大规模混合区域会自相似地增长。一维湍流扩散模型结合Prandtl的混合长度理论被用来描述混合区域的增长。在这种情况下,混合时间的增长随时间的变化而扩展为Batchelor湍流的2/7的幂,正如雷诺数大的能源预算论证所预测的那样。在小规模下,测量流量各向同性和间歇性。结果表明,在泰勒微尺度上产生各向异性需要两种流体之间具有较大的密度比,而在耗散(Kolmogorov)尺度上流体仍保持各向同性;;在确定了密度梯度的作用后,我重新研究了该问题。 Rayleigh-Taylor不稳定配置中存在重力。现在,由于重力场引起的斜压涡旋提供了驱动最初衰减的湍流场的能量。流动动力学的特征是问题的两个重要竞争时间尺度,分别对应于初始湍流场的衰减和瑞利-泰勒的发展。发现产生的湍流在所有尺度上都是各向异性的。气泡和尖峰前的速度场是高度断续的。

著录项

  • 作者

    Movahed, Pooya.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.;Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号