首页> 外文学位 >3D bioprinting of vasculature network for tissue engineering.
【24h】

3D bioprinting of vasculature network for tissue engineering.

机译:用于组织工程的血管网络的3D生物打印。

获取原文
获取原文并翻译 | 示例

摘要

Tissue engineering, with the ultimate goal of engineering artificial tissues or organs to replace malfunctioning or diseased ones inside the human body, provides a substitute for organ transplantation. Driven by the growing, tremendous gap between the demand for and the supply of donated organs, tissue engineering has been advancing rapidly. There has been great success in engineering artificial organs such as skin, bone, cartilage and bladders because they have simple geometry, low cell oxygen consumption rates and little requirements for blood vessels. However, difficulties have been experienced with engineering thick, complex tissues or organs, such as hearts, livers or kidneys, primarily due to the lack of an efficient media exchange system for delivering nutrients and oxygen and removing waste. Very few types of cells can tolerate being more than 200 &mgr;m away from a blood vessel because of the limited oxygen diffusion rate. Without a vasculature system, three-dimensional (3D) engineered thick tissues or organs cannot get sufficient nutrients, gas exchange or waste removal, so nonhomogeneous cell distribution and limited cell activities result. Systems must be developed to transport nutrients, growth factors and oxygen to cells while extracting metabolic waste products such as lactic acid, carbon dioxide and hydrogen ions so the cells can grow, proliferate and make extracellular matrix (ECM), forming large-scale tissues and organs. However, available biomanufacturing technologies encounter difficulties in manufacturing and integrating vasculature networks into engineered constructs.;This work proposed a novel 3D bioprinting technology that offers great potential for integration into thick tissue engineering. The presented system offered several advantages, including that it was perfusable, it could print conduits with smooth, uniform and well-defined walls and good biocompatibility, it had no post-fabrication procedure, and it enabled direct bioprinting of complex media exchange networks.
机译:组织工程学的最终目标是对人造组织或器官进行工程改造,以替代人体内部发生故障或患病的组织,从而为器官移植提供了一种替代方法。在捐赠器官的供求之间不断扩大的巨大缺口驱动下,组织工程学一直在迅速发展。在工程人造器官如皮肤,骨骼,软骨和膀胱方面取得了巨大的成功,因为它们具有简单的几何形状,低的细胞耗氧率和对血管的需求。然而,工程化厚,复杂的组织或器官(例如心脏,肝脏或肾脏)时遇到了困难,这主要是由于缺乏有效的培养基交换系统来输送养分和氧气并清除废物。由于有限的氧气扩散速率,极少数类型的细胞可以容忍远离血管200微米。没有脉管系统,三维(3D)工程化的厚组织或器官将无法获得足够的营养,气体交换或废物清除,因此会导致细胞分布不均和细胞活动受限。必须开发出将营养素,生长因子和氧气输送到细胞,同时提取代谢废物如乳酸,二氧化碳和氢离子的系统,这样细胞才能生长,增殖并形成细胞外基质(ECM),形成大规模组织和细胞。器官。然而,可用的生物制造技术在制造和将脉管系统网络集成到工程构造中时遇到困难。这项工作提出了一种新颖的3D生物打印技术,为整合到厚组织工程中提供了巨大的潜力。所提出的系统具有许多优点,包括可灌注,可打印壁面光滑,均匀且轮廓分明的导管以及良好的生物相容性,无需后期制作程序,并且可直接进行复杂介质交换网络的生物打印。

著录项

  • 作者

    Zhang, Yahui.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号