首页> 外文学位 >Nanoparticle cerium oxide and mixed cerium oxides for improved fuel cell lifetime.
【24h】

Nanoparticle cerium oxide and mixed cerium oxides for improved fuel cell lifetime.

机译:纳米氧化铈和混合氧化铈可延长燃料电池寿命。

获取原文
获取原文并翻译 | 示例

摘要

While there is a rich body of literature concerning of properties of bulk cerium oxide and cerium cations in solution, the discussion has been inappropriately applied to nanoscale cerium oxide resulting in many unexpected or unexplained results. In particular, there is very limited understanding about the properties of cerium oxide and its potential use as a radical scavenger, and how the catalytic properties of cerium oxide change as the particle size approaches the nanoscale. For example, the involvement of Ce+4 and Ce+3 cations in reactions such as hydrogen peroxide decomposition have been investigated for both cerium cations and bulk cerium oxide. However, while both are assumed to decompose hydrogen peroxide through the same mechanism, whereby Ce+4 is involved in peroxide decomposition while Ce +3 is involved in radical scavenging, there has been very little done to address how the selectivity and activity of these reactions are affected by changing the majority cation population, as cerium cations in solution are predominantly in the +3 oxidation state while cerium cations are predominantly in the +4 oxidation state in cerium oxide. This matter is further complicated in cerium oxide nanoparticles where the surface concentration of Ce +3 cations is increased due to particle curvature effects.;Due to the potential of controlling the surface cerium oxidation state using particle size and using this control to change the catalytic properties, this project investigated the effect of particle size and composition and the activity and selectivity of cerium oxide nanoparticles, and has served to expand the understanding of the properties of pure and mixed nanoparticle cerium oxide. This work explains the metric developed for measuring the catalytic properties of pure and mixed cerium oxide nanoparticles, which is also good at predicting the immediate and long-term behavior of nanoparticles in hydrogen fuel cells. This work also directly demonstrates praseodymium enrichment of cerium-praseodymium oxide nanoparticles and how both size and composition affected the catalytic properties. Finally, this project has given new direction for doped cerium oxide nanoparticles in hydrogen fuel cells. Both gadolinium and praseodymium doped cerium oxide nanoparticles have been shown to be poor choices for improving fuel cell lifetime, while zirconium doped cerium oxide nanoparticles show the greatest promise for improving fuel cell lifetime as the doped oxides give both better catalytic behavior than pure cerium, and unlike pure cerium oxide, does not ultimately dissolve to give a destructive nanoparticle.
机译:尽管有大量有关溶液中本体氧化铈和铈阳离子性质的文献,但是该讨论不适当地应用于纳米级氧化铈,导致许多意外或无法解释的结果。尤其是,对于氧化铈的性质及其作为自由基清除剂的潜在用途以及氧化铈的催化性质如何随着粒径接近纳米级而变化的了解非常有限。例如,对于铈阳离子和本体氧化铈,已经研究了Ce + 4和Ce + 3阳离子参与反应(例如过氧化氢分解)的过程。然而,虽然假定两者都通过相同的机理分解过氧化氢,其中Ce + 4参与过氧化物的分解,而Ce + 3参与自由基的清除,但很少有研究解决这些反应的选择性和活性。受到大多数阳离子种群变化的影响,因为溶液中的铈阳离子主要以+3氧化态存在,而铈阳离子主要在氧化铈中以+4氧化态存在。在氧化铈纳米颗粒中,由于颗粒曲率效应,Ce +3阳离子的表面浓度增加,使这一问题变得更加复杂。由于使用粒度控制表面铈氧化态并利用这种控制来改变催化性能,具有潜在的可能性,该项目研究了粒度和组成以及二氧化铈纳米粒子的活性和选择性的影响,并有助于扩大对纯纳米粒子和混合纳米二氧化铈性质的了解。这项工作解释了为测量纯氧化铈和混合氧化铈纳米颗粒的催化性能而开发的度量标准,该度量标准还擅长预测氢燃料电池中纳米颗粒的即时和长期行为。这项工作还直接证明了铈-oxide氧化物纳米粒子的富集以及大小和组成如何影响催化性能。最后,该项目为氢燃料电池中掺杂的氧化铈纳米粒子提供了新的方向。 g和and掺杂的氧化铈纳米颗粒均被证明是改善燃料电池寿命的不佳选择,而锆掺杂的氧化铈纳米颗粒则有望改善燃料电池的寿命,因为掺杂的氧化物比纯铈具有更好的催化性能,而且与纯氧化铈不同,它不会最终溶解而形成破坏性的纳米粒子。

著录项

  • 作者

    Stewart, Stephen Michael.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Engineering Chemical.;Engineering General.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号