首页> 外文学位 >Thermal coupling at aqueous and biomolecular interfaces.
【24h】

Thermal coupling at aqueous and biomolecular interfaces.

机译:在水和生物分子界面的热耦合。

获取原文
获取原文并翻译 | 示例

摘要

Heat flow in the materials with nanoscopic features is dominated by thermal properties of the interfaces. While thermal properties of the solid-solid and solid-liquid interfaces are well studied, research of the thermal transport properties across soft (liquid-liquid) interfaces is very limited. Such interfaces are, however, plentiful in biological systems. In such systems the temperature control is of a great importance, because biochemical reactions, conformation of biomolecules as well as processes in biological cells and membranes have strong temperature sensitivity. The critical ingredient to temperature control in biological systems is the understanding of heat flow and thermal coupling across soft interfaces.;To investigate heat transfer across biological and aqueous interfaces we chose to study a number of soft interfacial systems by means of molecular dynamic simulations. One of the interfaces under our investigation is the interface between protein (specifically green fluorescent protein) and water. Using this model we concentrated on the importance of vibrational frequency on coupling between water and proteins, and on significant differences between the roles of low and high frequency vibrations. Our thermal interfacial analysis allowed us to shed new light on to the issue of protein to water slaving, i.e., the concept of water controlling protein dynamics.;Considering that the surface of the protein is composed of a complicated mixture of the hydrophobic and hydrophilic domains, to systematically explore the role of interfacial interactions we studied less complicated models with homogenous interfaces whith interfacial chemistry that could be changed in a controlled manner. We demonstrated that thermal transport measurements can be used to probe interfacial environments and to quantify interfacial bonding strength. Such ability provides a unique opportunity to characterize a variety of interfaces, which can be difficult to achieve with more direct structural characterization tools. We followed up with studies of models of heterogeneous interfaces where we addressed the issue of independent vs. correlated contributions of hydrophobic and hydrophilic interfacial regions to thermal transfer.;Finally we simulated heat flow across lipid bilayers which involve hydrophilic interfaces, but are characterized by relatively high surface roughness and non-saturated hydrocarbon chains. We found that roughness of the interface can significantly enhance thermal transport across the lipid membranes.
机译:具有纳米特征的材料中的热流受界面的热性能支配。虽然对固-固和固​​-液界面的热性能进行了很好的研究,但是跨软(液-液)界面的热传输性能的研究非常有限。但是,这种接口在生物系统中很多。在这样的系统中,温度控制非常重要,因为生化反应,生物分子的构象以及生物细胞和膜中的过程具有很强的温度敏感性。生物系统中温度控制的关键因素是对软界面上的热流和热耦合的了解。为了研究跨生物界面和水界面的传热,我们选择通过分子动力学模拟研究许多软界面系统。我们正在研究的界面之一是蛋白质(特别是绿色荧光蛋白)与水之间的界面。使用该模型,我们集中于振动频率对水与蛋白质之间的耦合的重要性,以及低频和高频振动的作用之间的显着差异。我们的热界面分析使我们能够从蛋白质到水的奴役问题上找到新的思路,即水控制蛋白质动力学的概念。考虑到蛋白质的表面是由疏水域和亲水域的复杂混合物组成的,为了系统地探讨界面相互作用的作用,我们研究了界面化学性质均一的,较简单的模型,该界面可以以可控的方式改变。我们证明了热传输测量可用于探测界面环境并量化界面结合强度。这种能力提供了表征各种界面的独特机会,而使用更直接的结构表征工具可能很难实现。我们对异质界面模型进行了研究,其中解决了疏水和亲水界面区域对热传递的独立贡献与相关贡献的问题;最后,我们模拟了跨脂质双层的热流,这些脂质双层涉及亲水界面,但其特点是相对高表面粗糙度和不饱和烃链。我们发现界面的粗糙度可以显着增强跨脂质膜的热传输。

著录项

  • 作者

    Shenogina, Natalia B.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 82 p.
  • 总页数 82
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号