首页> 外文学位 >Numerical simulation of out-of-plane distortion fatigue crack growth in bridge girders.
【24h】

Numerical simulation of out-of-plane distortion fatigue crack growth in bridge girders.

机译:桥梁大梁面外变形疲劳裂纹扩展的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Aging of the United States infrastructure systems has resulted in the degradation of many operational bridge structures throughout the country. Structural deficiencies can result from material fatigue caused by cyclical loadings leading to localized structural damage. While fatigue crack growth is viewed as a serviceability problem, unstable crack growth can compromise the integrity of the structure. Multi-girder bridges designed with transverse cross bracing systems can be prone to distortion fatigue at unstiffened web gaps. Cracking is exhibited within this fatigue prone region from the application of cyclical multi-mode loadings. Focus of fatigue analysis has largely been directed at pure Mode I loading through the development of AASHTO fatigue classifications for crack initiation and the Paris Law for crack propagation. Numerical modeling approaches through the ABAQUS Extended Finite Element Method offers a unique avenue in which this detail can be assessed. Finite element simulations were developed to first evaluate the applicability of the Paris Law crack propagation under multi-mode loading against experimental data. Following the validation, fatigue crack growth in plate girders with various web gap sizes was assessed due to mixed-mode loadings. Modeling results showed enlargement of horizontal initial crack lengths within stiffer web gap regions arrested crack development. Crack directionality was also seen to change as initial crack lengths were increased. From this research it is hypothesized that deterioration of the transverse stiffener connection can be minimized by increasing the horizontal length of initial fatigue cracks. Enlargement of the crack plane away from regions of localized stress concentrations within the web gap may result in arrestment of the out-of-plane distortion induced cracking.
机译:美国基础设施系统的老化导致全国许多运营桥梁结构的退化。结构缺陷可能是由于周期性加载引起的材料疲劳而导致局部结构损坏。尽管疲劳裂纹扩展被视为可维修性问题,但不稳定的裂纹扩展会损害结构的完整性。设计有横向交叉支撑系统的多箱梁桥在未加强的腹板缝隙处容易产生变形疲劳。通过施加周期性多模载荷,在该易疲劳区域内出现裂纹。通过开发用于裂纹萌生的AASHTO疲劳分类和用于裂纹扩展的巴黎定律,疲劳分析的重点主要针对纯I模式载荷。通过ABAQUS扩展有限元方法进行的数值建模方法提供了一种可以评估此​​细节的独特途径。开发了有限元模拟,以首先根据实验数据评估多模式载荷下巴黎定律裂纹扩展的适用性。验证之后,由于混合模式载荷,评估了具有不同腹板间隙尺寸的板梁的疲劳裂纹扩展。模拟结果表明,在较硬的腹板间隙区域内,水平初始裂纹长度的增大阻止了裂纹的发展。随着初始裂纹长度的增加,裂纹方向也发生了变化。根据这项研究,可以假设,通过增加初始疲劳裂纹的水平长度,可以将横向加劲肋连接的损坏降到最低。远离腹板间隙内局部应力集中区域的裂纹平面扩大可能会导致面外变形引起的裂纹停止。

著录项

  • 作者

    MIller, Paula A.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Engineering Civil.;Engineering Materials Science.
  • 学位 M.S.
  • 年度 2014
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号