首页> 外文学位 >Experimental and thermodynamic study on the Mg-X (X: Ag, Ca, In, Li, Na, Sn, Sr and Zn) multicomponent systems.
【24h】

Experimental and thermodynamic study on the Mg-X (X: Ag, Ca, In, Li, Na, Sn, Sr and Zn) multicomponent systems.

机译:Mg-X(X:Ag,Ca,In,Li,Na,Sn,Sr和Zn)多组分系统的实验和热力学研究。

获取原文
获取原文并翻译 | 示例

摘要

Magnesium alloys, as the current lightest structural metallic materials, have been widely used in automotive, electronic consumer, and aerospace industries. This interest in the use of magnesium alloys arises from their low density and potentially high strength/weight ratios, good processing properties, as well as the possibility of nearly complete recycling. Hitherto, several series of magnesium alloys have been developed for different applications. These alloys include Mg-Al, Mg-Zn, Mg-Mn, and Mg-Rare-earths, etc. However, magnesium alloys display shortcomings. Among them are poor corrosion behavior, low creep resistance at elevated temperatures, and low strength. Consequently, improvements are still needed in the properties of current alloys and in the development of new Mg-based alloys to meet the requirements of industry. Microalloying has been widely used for improving the mechanical properties of alloys. Current research shows that additions of Li, Na, Ca, Zn, Ag, In, Sr, and Sn can improve the mechanical properties of Mg-based alloys, by forming secondary precipitates in the Mg matrix.;As part of ongoing projects in our group to develop a thermodynamic database for Mg-based multicomponent alloys, the main objective of the present work is to establish such a database with added Ag, Ca, In, Li, Na, Sn, Sr and Zn. This is expected to provide a guide for magnesium alloy design, through computational modeling and experimental investigations. Numerous binary and ternary systems in the Mg-X (X: Ag, Ca, In, Li, Na, Sn, Sr and Zn) multicomponent system have been critically evaluated and systematically optimized in the present work.;First, phase equilibria measurements on the five ternary systems: Mg-Sn-X (X: Ag, In, Zn, Ca, and Sr) system have been carried out. Phase equilibria in the Mg-rich region of the Mg-Sn-In (415 and 330 °C), Mg-Sn-Ag (415 and 330 °C), and Mg-Sn-Zn (300 °C) ternary systems were investigated by quenching, electron probe micro-analysis (EPMA), and X-ray diffraction (XRD). Ternary isoplethal sections at constant compositions were inverstigated using differential scanning calorimetry (DSC). These were Mg-In-Sn (5 at. %, 10 at. % Sn), Mg-Sn-Ag (10 at. % Sn, 30 at.% Ag0 and Mg-Sn-Zn (10 at.% Sn). No ternary compounds were found in these three isothermal sections. Iisothermal sections of the Mg-Sn-Ca and Mg-Sn-Sr systems in the Mg-rich region (350 and 415 °C) were inverstigated by quenching key samples. SEM and EDS were used for phase composition analysis. The existence of the ternary phases MgSnCa and MgSnSr was confirmed, and two new ternary phases (Mg5Sn 3Sr and Mg25Sn24Sr14) were found in Mg-Sn-Sr isothermal sections at 415 and 350 °C.;Second, thermodynamic descriptions of 19 binary systems (Mg-In, Mg-Ag, Ag-Zn, Ag-Ca, Ag- Li, In-Na, Na-Sn, Li-Sn, Na-Zn, In-Zn, Sn-Sr, Ca-Li, Ca-Sn, In-Sn, Ca-In, Ca-Na, Ag-In, Ag-Na and Ag-Sn) and 12 ternary systems (Mg-Sn-X, X: Ag, In, Li, Zn, Ca, and Sr, Mg-Zn-In, Mg-Ag-In, Mg-Ca-Li, Mg-Ca-Sr, Mg-Sn-In, and In-Sn-Zn) have been carried out in the present work. These were based on literature review of the solid solutions including intermetallic compounds (crystal structures, melting points, enthalpies of formation, transformation temperatures, etc.). The same has been done for liquid solutions (liquidus curves, integral enthalpies of mixing, partial enthalpies of mixing, activities of the components, heat capacities, etc.). The Modified Quasichemical Model in the Pair Approximation (MQMPA) was used for modeling the liquid solution, which exhibits a high degree of short-range order. The solid phases are modeled with the Compound Energy Formalism (CEF). A self-consistent thermodynamic database was constructed for the Mg-X (X: Ag, Ca, In, Li, Na, Sn, Sr and Zn) multicomponent system.;In developing new magnesium alloys, it is important to understand their constitution (microstructure) and thermodynamic behaviour. Obtaining such information solely through experiment is cumbersome and costly. Phase diagrams, as a visual representation of the state of equilibrium in a system as a function of temperature, pressure and component composition, have been proved to be a useful aid for materials design and processing. Thermodynamic modeling on multi-component systems by the CALPHAD approach has been shown to be a very efficient way of investigating phase equilibria. With the help of computational thermochemistry, not only binary and ternary systems, but also multi-component systems, can be investigated properly.;Third, some applications with the complete thermodynamic database are shown. A study of alloy design for Mg-based multicomponent systems was carried out. The effects of In, Li and Na additions on the properties of Mg-Sn based alloys was also studied.;Futhermore, an experimental study of metallic glass formability in selected Mg-Zn-X ternary systems have been done with the collaboration of Mr. Yi-Nan Zhang of Concordia University. Phase equilbria in the Mg-Zn-Sr ternary system, at 300 °C in the composition range 0-30 at. % Sr, were measured in the present work using key samples and the diffusion-couple technique. Four new ternary compounds were found in this isothermal section. The glass formability of two series of Mg-Zn-Sr alloys of compostions Mg88-xZnxSr 2 (28≤x≤38) and Mg85-yZnySr5 (23≤y≤37) were studied experimentally in the present work.;Use of the thermodynamic database of the Mg-X (X: Ag, Ca, In, Li, Na, Sn, Sr and Zn) multicomponent system provides clear guidelines for selection of Mg-based alloys for design, thereby avoiding tedious and time-consuming experiments.
机译:镁合金作为目前最轻的结构金属材料,已被广泛用于汽车,电子消费品和航空航天行业。使用镁合金的这种兴趣源于它们的低密度和潜在的高强度/重量比,良好的加工性能以及几乎完全回收的可能性。迄今为止,已经针对不同的应用开发了几种系列的镁合金。这些合金包括Mg-Al,Mg-Zn,Mg-Mn和Mg-稀土等。但是,镁合金具有不足之处。其中包括不良的腐蚀行为,在高温下的低抗蠕变性和低强度。因此,仍需要改进当前合金的性能以及开发新的基于Mg的合金以满足工业需求。微合金化已被广泛用于改善合金的机械性能。当前的研究表明,添加Li,Na,Ca,Zn,Ag,In,Sr和Sn可以通过在Mg基体中形成二次沉淀物来改善Mg基合金的机械性能。为了开发Mg基多组分合金的热力学数据库,本工作的主要目的是建立一个添加有Ag,Ca,In,Li,Na,Sn,Sr和Zn的数据库。通过计算建模和实验研究,有望为镁合金设计提供指导。在本工作中,对Mg-X(X:Ag,Ca,In,Li,Na,Sn,Sr和Zn)多组分和三元体系进行了严格的评估和系统地优化。这五个三元系统是:Mg-Sn-X(X:Ag,In,Zn,Ca和Sr)系统。 Mg-Sn-In(415和330°C),Mg-Sn-Ag(415和330°C)和Mg-Sn-Zn(300°C)三元体系的富镁区域的相平衡为通过淬火,电子探针微分析(EPMA)和X射线衍射(XRD)进行了研究。使用差示扫描量热法(DSC)对恒定成分的三等当量切片进行了研究。它们是Mg-In-Sn(5 at。%,10 at。%Sn),Mg-Sn-Ag(10 at。%Sn,30 at。%Ag0和Mg-Sn-Zn(10 at。%Sn)在这三个等温区未发现三元化合物,通过淬火关键样品对Mg-Sn-Ca和Mg-Sn-Sr体系在富Mg区(350和415°C)的等温区进行了例示。用EDS进行相组成分析,确认了MgSnCa和MgSnSr三元相的存在,并且在415和350℃的Mg-Sn-Sr等温区发现了两个新的三元相(Mg5Sn 3Sr和Mg25Sn24Sr14)。 ,19种二元体系(Mg-In,Mg-Ag,Ag-Zn,Ag-Ca,Ag-Li,In-Na,Na-Sn,Li-Sn,Na-Zn,In-Zn,Sn- Sr,Ca-Li,Ca-Sn,In-Sn,Ca-In,Ca-Na,Ag-In,Ag-Na和Ag-Sn)和12种三元体系(Mg-Sn-X,X:Ag,In ,Li,Zn,Ca和Sr,Mg-Zn-In,Mg-Ag-In,Mg-Ca-Li,Mg-Ca-Sr,Mg-Sn-In和In-Sn-Zn)这些是基于对包括中间物在内的固溶体的文献综述块状化合物(晶体结构,熔点,形成焓,转变温度等)。对于液体溶液(液相线曲线,混合积分焓,混合部分焓,组分的活度,热容量等)也进行了同样的处理。对近似中的改进的拟化学模型(MQMPA)用于对液体溶液进行建模,该溶液显示出高度的短程有序性。固相用复合能量形式主义(CEF)建模。为Mg-X(X:Ag,Ca,In,Li,Na,Sn,Sr和Zn)多组分体系建立了一个自洽的热力学数据库。在开发新型镁合金时,重要的是了解它们的组成(微观结构)和热力学行为。仅通过实验来获得这样的信息是麻烦且昂贵的。相图作为系统中平衡状态随温度,压力和组分组成的函数的可视化表示,已被证明是对材料设计和加工的有用帮助。通过CALPHAD方法对多组分系统进行热力学建模已被证明是研究相平衡的一种非常有效的方法。借助于计算热化学,不仅可以正确地研究二元和三元系统,还可以研究多组分系统。第三,显示了具有完整热力学数据库的一些应用。对基于镁的多组分系统的合金设计进行了研究。还研究了In,Li和Na的添加对Mg-Sn基合金性能的影响。,在Concordia大学的张一南先生的合作下,对选定的Mg-Zn-X三元体系中的金属玻璃成形性进行了实验研究。 Mg-Zn-Sr三元体系中的相平衡,在300°C下,组成范围为0-30 at。在当前工作中使用关键样品和扩散耦合技术测量了%Sr。在此等温区发现了四个新的三元化合物。研究了由Mg88-xZnxSr 2(28≤x≤38)和Mg85-yZnySr5(23≤y≤37)组成的两种Mg-Zn-Sr合金系列的玻璃成形性。 Mg-X(X:Ag,Ca,In,Li,Na,Sn,Sr和Zn)多组分系统的数据库为选择用于设计的Mg基合金提供了明确的指南,从而避免了繁琐而耗时的实验。

著录项

  • 作者

    Wang, Jiang.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Materials Science.;Engineering Mining.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 447 p.
  • 总页数 447
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号