首页> 外文学位 >Functional and Anatomical Investigation of Sensory Processing in the Rodent Somatosensory Cortex.
【24h】

Functional and Anatomical Investigation of Sensory Processing in the Rodent Somatosensory Cortex.

机译:啮齿类动物体感皮层感觉处理的功能和解剖学研究。

获取原文
获取原文并翻译 | 示例

摘要

Of all sensory cortical areas, barrel cortex is among the best understood in terms of circuitry, yet least understood in terms of sensory function. Because sensory cortical areas have stereotyped anatomies, understanding computations in one sensory area may inform us of computations being performed by other sensory areas or sensory microcircuits all over the brain. Functional studies of barrel cortex are therefore important for marrying our immense and increasing knowledge of the cortical circuitry with the computations being performed in a cortical microcircuit. This thesis is an investigation of barrel cortex function as it pertains to 1) site specific sensory evoked plasticity in cortical microcircuit and 2) sensory receptive fields of the different cortical lamina in S1.;The brain's capacity to rewire is thought to diminish with age. It is widely believed that development stabilizes the synapses from thalamus to cortex and that adult experience alters only synaptic connections between cortical neurons. We combined whole-cell recording from individual thalamocortical neurons in adult rats with a newly developed automatic tracing technique to reconstruct individual axonal trees. Whisker trimming substantially reduced thalamocortical axon length in barrel cortex but not the density of TC synapses along a fiber. Thus, sensory experience alters the total number of TC synapses. After trimming, sensory stimulation evoked more tightly time-locked responses among thalamorecipient layer 4 cortical neurons. Axonal plasticity was topographically specific, with robust changes in L4 and modest changes in the septal and infragranular layers. These results indicate that plasticity is mediated by interactions with the local cortical subcircuit and may be suggestive of laminar specific roles in sensory learning/coding.;Next we sought to examine spatiotemporal coding properties of neurons in the different layers of the cortical microcircuit in S1. We combined intracellular recording and a novel multi-directional multi-whisker stimulator system to estimate receptive fields by reverse correlation of stimuli to synaptic inputs. Spatiotemporal receptive fields were identified orders of magnitude faster than by conventional spike-based approaches, even for neurons with little or no spiking activity. Given a suitable stimulus representation, a simple linear model captured the stimulus-response relationship for all neurons with unprecedented accuracy. In contrast to conventional single-whisker stimuli, complex stimuli revealed dramatically sharpened receptive fields, largely due to the effects of adaptation. Surprisingly, this phenomenon allows the surround to facilitate rather than suppress responses to the principal whisker. Optimized stimuli enhanced firing in layers 4--6, but not 2/3, which remained sparsely active. Surround facilitation through adaptation may be required for discriminating complex shapes and textures during natural sensing.
机译:在所有的感觉皮层区域中,桶状皮质在电路方面是最能被理解的,而在感觉功能方面却是最不被理解的。由于感觉皮层区域具有定型的解剖结构,因此了解一个感觉区域的计算可能会告诉我们其他整个大脑的感觉区域或感觉微电路正在执行的计算。因此,在皮质微电路中进行计算时,桶状皮质的功能研究对于结合我们的大量知识和增加对皮质电路的了解非常重要。本论文是对桶状皮层功能的研究,涉及以下方面:1)皮质微电路中特定部位的感觉诱发可塑性,以及2)S1中不同皮质层的感觉感受野。人们普遍认为,发育稳定了从丘脑到皮层的突触,而成年人的经历仅改变了皮层神经元之间的突触连接。我们将成年大鼠单个丘脑皮质神经元的全细胞记录与新开发的自动追踪技术相结合,以重建单个轴突树。晶须修整大大减少了桶状皮质中丘脑皮质轴突的长度,但未降低沿纤维的TC突触的密度。因此,感觉体验改变了TC突触的总数。修剪后,感觉刺激在丘脑皮层第4层皮质神经元之间引起了更紧密的时间锁定反应。轴突的可塑性在地形上是特定的,L4的变化很大,而中隔层和颗粒下层的变化适中。这些结果表明可塑性是通过与局部皮质子回路的相互作用来介导的,并且可能暗示了层状在感觉学习/编码中的特定作用。我们结合细胞内记录和新颖的多向多晶须刺激系统,以通过刺激与突触输入的反向相关性来估计感受野。与常规的基于尖峰的方法相比,即使对于很少或没有尖峰活动的神经元,时空感受野的识别速度也要比传统的基于尖峰的方法快几个数量级。给定适当的刺激表示,一个简单的线性模型以前所未有的精度捕获了所有神经元的刺激-响应关系。与传统的单晶须刺激相反,复杂的刺激显着增强了感受野,这主要是由于适应的影响。令人惊讶的是,这种现象使环绕声有助于而不是抑制了对主晶须的响应。优化的刺激增强了4--6层的射击,但2/3层没有射击,后者仍然稀疏活跃。在自然感测期间,可能需要通过自适应来简化周围环境,以区分复杂的形状和纹理。

著录项

  • 作者

    Ramirez, Alejandro.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号