首页> 外文学位 >Directed self-assembly of nanoparticle array: A single electron device platform to make novel systems.
【24h】

Directed self-assembly of nanoparticle array: A single electron device platform to make novel systems.

机译:纳米粒子阵列的定向自组装:制造新型系统的单电子设备平台。

获取原文
获取原文并翻译 | 示例

摘要

The biggest attraction of building nanometer structures is the emergence of novel properties and phenomena at these length scales. In the discipline of electronics particularly, nanoscale bridges the gap between the microscopic quantum world to the macroscopic classical world. The bridge can be tailored to effectively affect the material properties. One of the well-known phenomena that is altered at the nanoscale is the electron transport through a metal, i.e. the Ohm's law. As the size of the metal particle reduces to nanometer, Ohm's law breaks down due to trapping of a single electron charge, i.e. local charging, that prohibits the subsequent steam of electrons to pass through. This phenomenon is referred to as the Coulomb blockade, where the current is blocked below a threshold bias, VT. However, to observe a robust VT, the system has to be cooled to cryogenic temperatures. Here, fabrication and construction of a nano-system using directed self-assembled network of 1D necklace of 10 nm Au particles are described, which exhibits a robust single electron effect with a record high VT of 7.5 V at room temperature and a subsequent current, I rise as ( V/VT -- 1)&zgr;, where &zgr; is a critical constant, usually around 2. These physical parameters can be precisely tuned by tailoring the dimension and topology of the ensemble. The finding is important as nanoparticle based Single Electron Devices (SEDs) have become of great interest due to their orders of magnitude high sensitivity to gating. For over six decades of research on SEDs, it is clear that V T > 2 V at room temperature is required to make a robust device to eliminate the omnipresent "quantum noise" in these systems. Our system has not only shown a room temperature VT of well above 2 V but also its easy integrability with microelectronics circuits. Detailed scientific studies have been performed on the formation and structure of necklace array to understand the assembly process. Subsequent modification of the necklace array can be performed by nano-cementing to regulate its electrical and optoelectronic properties while maintaining the single electron effect. In the second aspect of the process, the device fabrication, a method implementing soft-lithography and electron beam has been developed to pattern the necklace monolayer with custom design at sub-micron levels. The technique confines the network of the necklaces to a width small enough that the current is limited to a single necklace array connecting two larger necklace network clusters. The approach allows fundamental and sophisticated measurements to be conducted to study mesoscale properties of disordered structures.
机译:建筑纳米结构的最大吸引力是在这些长度尺度上出现了新颖的特性和现象。特别是在电子学领域,纳米级弥合了微观量子世界和宏观古典世界之间的鸿沟。可以定制桥以有效地影响材料特性。在纳米级发生变化的一种众所周知的现象是电子通过金属的传输,即欧姆定律。当金属颗粒的尺寸减小到纳米时,欧姆定律由于捕获单个电子电荷即局部电荷而破裂,这阻止了随后的电子蒸汽通过。这种现象称为库仑阻塞,其中电流被限制在阈值偏置VT以下。但是,要观察强劲的VT,必须将系统冷却至低温。在此,我们描述了使用10 nm Au颗粒的1D项链的定向自组装网络制造和构建纳米系统的过程,该系统表现出强大的单电子效应,在室温和随后的电流下达到创纪录的7.5 V的高VT,我升为(V / VT-1)&zgr ;,其中&zgr;是一个关键常数,通常约为2。可以通过调整集合的尺寸和拓扑来精确调整这些物理参数。这一发现很重要,因为基于纳米粒子的单电子器件(SED)由于其数量级高的门控敏感性而引起了人们的极大兴趣。在对SED的超过六十年的研究中,很明显,在室温下V T> 2 V是制造坚固的器件以消除这些系统中无处不在的“量子噪声”所必需的。我们的系统不仅显示出室温VT远高于2 V,而且还易于与微电子电路集成。已经对项链阵列的形成和结构进行了详细的科学研究,以了解组装过程。项链阵列的后续修改可以通过纳米胶结来进行,以调节其电和光电子性能,同时保持单电子效应。在该方法的第二方面,已经开发了器件制造,一种实现软光刻和电子束的方法,以通过定制设计在亚微米水平上对项链单层进行构图。该技术将项链的网络限制在足够小的宽度,以使电流限于连接两个较大项链网络簇的单个项链阵列。该方法允许进行基本而复杂的测量以研究无序结构的中尺度特性。

著录项

  • 作者

    Ong, Jason Kee Yang.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号