首页> 外文学位 >Embryonic and postnatal development of the neural circuitry involved in motor control.
【24h】

Embryonic and postnatal development of the neural circuitry involved in motor control.

机译:涉及运动控制的神经回路的胚胎和产后发育。

获取原文
获取原文并翻译 | 示例

摘要

The development of locomotion is believed to result from the maturation of the spinal circuits controlling motor output, however little is known about its mechanisms. To shed some light into this process we studied the development of the synaptic connectivity of two spinal inhibitory interneurons. Adult motoneurons are controlled by inhibitory networks that include recurrent and reciprocal inhibition (Pierrot-Deseilligny & Burke, 2005). Each is modulated by different ventral horn spinal interneurons that display synaptic connectivity adapted to their function: Renshaw cells (RCs) mediate recurrent inhibition, receive excitatory inputs from motor axons and inhibit homonymous and synergistic motoneurons; while Ia inhibitory interneurons (IaINs) mediate reciprocal inhibition, receive inputs from Ia proprioceptive afferents and inhibit antagonist motor pools.;RCs and IaINs both derive from a homogenous class of embryonic ventral interneurons denominated "V1", leading us to question whether motor axons and Ia afferents target V1 interneurons during early development, followed by postnatal deselection of specific inputs and generation of cells with typical RC/IaIN connectivity. Using immunohistochemistry, confocal microscopy, 3D neuronal reconstructions and transgenic animal models expressing V1-IN lineage markers, we analyzed synaptic input development on V1-derived RCs and IaINs. We found that motor axons specifically target RCs, are established in early embryo and maintained throughout development. In contrast, Ia afferents contact both IaINs and RCs in late embryo and throughout postnatal development. Ia afferent synapses are de-selected from RCs coinciding with maturation of weight-bearing locomotion. However, Ia afferent inputs on IaINs always occurred at a higher density and were more proximally located than on RCs, suggesting a stronger bias for IaINs. We concluded that there are fundamental differences between IaINs and RCs in their competence for receiving and maintaining motor and Ia afferent inputs. Finally, we investigated the possible role of "transient" Ia afferent inputs on RCs by studying RC connectivity in three genetic animal models that lack Ia afferents, or have weakened/strengthened Ia afferent inputs. We found interactions between Ia afferent strength and motor axon input density on RCs, but not with other excitatory inputs, suggesting that early Ia afferent inputs contribute to shape the organization of motor synapses on RCs.
机译:运动的发展被认为是由控制马达输出的脊髓回路的成熟导致的,但是人们对其运动机理知之甚少。为了阐明这一过程,我们研究了两个脊柱抑制性中间神经元的突触连接性的发展。成年运动神经元受抑制性网络的控制,这些抑制性网络包括反复抑制和相互抑制(Pierrot-Deseilligny&Burke,2005)。每个都由不同的腹角脊髓神经元进行调节,这些神经元显示出与其功能相适应的突触连通性:Renshaw细胞(RC)介导复发抑制,从运动轴突接受兴奋性输入,并抑制同义和协同运动神经元。 Ia抑制性中间神经元(IaINs)介导相互抑制,从Ia本体感受传入传入输入并抑制拮抗性运动池。 Ia传入在早期发育过程中以V1中间神经元为目标,然后在出生后取消特定输入的选择并生成具有典型RC / IaIN连接性的细胞。使用免疫组织化学,共聚焦显微镜,3D神经元重建和表达V1-IN谱系标记的转基因动物模型,我们分析了V1衍生的RCs和IaINs的突触输入发展。我们发现特定于RC的运动轴突建立在早期胚胎中,并在整个发育过程中得到维持。相反,Ia传入者在胚胎晚期和整个产后发育过程中都接触IaIN和RC。从与负重运动的成熟一致的RC中选择1a个传入突触。但是,与RC相比,IaIN上的Ia传入输入始终以较高的密度出现,并且位于近端,这表明IaIN的偏向更强。我们得出的结论是,IaIN和RC在接收和维持运动和Ia传入输入的能力方面存在根本差异。最后,我们通过研究三种缺乏Ia传入或减弱/加强Ia传入输入的遗传动物模型中的RC连接性,研究了“瞬时” Ia传入输入对RC的可能作用。我们发现RC上Ia传入强度与运动轴突输入密度之间存在相互作用,但与其他兴奋性输入之间没有相互作用,这表明Ia传入早期输入有助于塑造RC上的运动突触的组织。

著录项

  • 作者单位

    Wright State University.;

  • 授予单位 Wright State University.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 292 p.
  • 总页数 292
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号