首页> 外文学位 >Anodic Olefin Coupling Reactions: Experimental and Computational Methods for Investigating the Intramolecular Cyclization Reactions of Electrooxidatively-Generated Radicals and Radical Cations.
【24h】

Anodic Olefin Coupling Reactions: Experimental and Computational Methods for Investigating the Intramolecular Cyclization Reactions of Electrooxidatively-Generated Radicals and Radical Cations.

机译:阳极烯烃偶联反应:用于研究电氧化生成的自由基和自由基阳离子的分子内环化反应的实验和计算方法。

获取原文
获取原文并翻译 | 示例

摘要

Intramolecular anodic olefin coupling reactions represent the oxidative coupling of an electron rich double bond to an intramolecular nucleophile to generate new five- or six-membered rings from acyclic compounds. The reactions may proceed through radical or radical cation reactive intermediates and are initiated by a single electron oxidation of the starting material. This dissertation describes experimental and computational work towards elucidating the mechanisms for the coupling of electron rich olefins to a number of nucleophiles, including sulfonamides, alcohols, amidyl radicals, enol ethers, and allyl silanes. Methods employed include cyclic voltammetry, density functional theory (DFT) calculations, and competition experiments. The overarching goal of this work is to understand the reactions so that they may be better implemented and controlled in organic synthesis. This work describes methods for identifying cyclizations which are under thermodynamic and/or kinetic control, as well as cyclizations which may be reversible. The anodic olefin coupling reactions presented here represent two electron processes, and this work reveals the importance of the second single electron oxidation in terminating the reaction and permitting formation of the desired product.;Chapter 3 explores the coupling of sulfonamide anions and alcohols to electron rich olefins. When the two nucleophiles are in direct competition for coupling to the same olefin, sulfonamide cyclization is the thermodynamically preferred pathway and is promoted by high temperatures and slow rates of oxidation. Coupling of the alcohol to the double bond is the kinetically preferred pathway, and is promoted by the use of low temperatures and a fast rate of oxidation. Cyclic voltammetry and DFT calculations support a radical mechanism for sulfonamide cyclization. Experimental evidence demonstrates that alcohol trapping of a radical cation is reversible.;Chapter 4 discusses the anodic coupling of electron rich olefins to carboxylic acids to synthesize lactones. Cyclic voltammetry and DFT calculations support a mechanism in which a radical cation localized at the olefin is attacked by a carboxylate. Kolbe decarboxylation did not compete with the cyclization. Instead, the success of the cyclization depended strongly on the ability of the cyclized radical to be efficiently oxidized. Lastly, the importance of product stability with respect to the pH of the electrolysis, as well as changes in pH over the course of the reaction, was demonstrated.;Chapter 5 reports mechanistic details on the anodic generation of amidyl radicals and their use in intramolecular cyclizations to synthesize lactams. Cyclic voltammetry and DFT calculations support a radical mechanism. Computational and experimental results indicate that the reactions led to higher yields of the desired product when the cyclization was exothermic. However, efficient oxidation of the cyclized intermediate may be used to overcome problems associated with an endothermic cyclization. Finally, competition experiments indicate that amidyl radicals behave in a manner similar to sulfonamide radicals when in competition with an alcohol. That is, amidyl radical cyclization is the thermodynamically preferred pathway and is promoted by the use of high temperatures and slow rates of oxidation.;Chapter 6 describes preliminary results of an investigation into the use of allyl silanes and enol ethers as nucleophiles in anodic olefin coupling reactions. It was found that an enol ether may be successfully coupled to an electron rich olefin in the presence of an intramolecular alcohol. However, an allyl silane could not be coupled to the same electron rich olefin in the presence of an alcohol. Efforts to understand this behavior and manipulate the observed selectivity are ongoing.
机译:分子内阳极烯烃偶联反应表示富电子双键与分子内亲核试剂的氧化偶联,以从无环化合物生成新的五元或六元环。反应可以通过自由基或自由基阳离子反应性中间体进行,并通过原料的单电子氧化来引发。本文阐述了为阐明富电子烯烃与许多亲核试剂(包括磺酰胺,醇,酰胺基,烯醇醚和烯丙基硅烷)的偶联机理而进行的实验和计算工作。所采用的方法包括循环伏安法,密度泛函理论(DFT)计算和竞争实验。这项工作的总体目标是了解反应,以便可以在有机合成中更好地实施和控制反应。这项工作描述了鉴定在热力学和/或动力学控制下的环化的方法,以及可能是可逆的环化。这里介绍的阳极烯烃偶联反应代表两个电子过程,这项工作揭示了第二个单电子氧化在终止反应并允许形成所需产物中的重要性。第三章探讨了磺酰胺阴离子和醇与富电子的偶联烯烃。当两个亲核试剂直接竞争耦合至相同的烯烃时,磺酰胺环化是热力学上优选的途径,并且由于高温和缓慢的氧化速率而被促进。醇与双键的偶联是动力学上优选的途径,并且通过使用低温和快速的氧化速率而促进。循环伏安法和DFT计算支持磺酰胺环化的自由基机理。实验证据表明,自由基阳离子的醇捕获是可逆的。第4章讨论了富电子烯烃与羧酸的阳极偶联,以合成内酯。循环伏安法和DFT计算支持一种机制,其中位于烯烃上的自由基阳离子受到羧酸盐的攻击。 Kolbe脱羧没有与环化竞争。相反,环化的成功很大程度上取决于环化自由基被有效氧化的能力。最后,证明了产品稳定性对电解pH值的重要性以及反应过程中pH值的变化。;第5章报告了有关酰胺基的阳极生成及其在分子内使用的机理的详细信息环化合成内酰胺。循环伏安法和DFT计算支持一种根本机理。计算和实验结果表明,当环化反应放热时,反应可导致所需产物的更高收率。然而,可以使用环化中间体的有效氧化来克服与吸热环化有关的问题。最后,竞争实验表明,酰胺基与醇竞争时的行为类似于磺酰胺基。就是说,酰胺基自由基环化是热力学上优选的途径,并且通过使用高温和缓慢的氧化速率而得到促进。第六章描述了研究使用烯丙基硅烷和烯醇醚作为阳极烯烃偶联中的亲核试剂的初步结果。反应。发现在分子内醇的存在下,烯醇醚可以成功地与富电子的烯烃偶联。然而,在醇存在下,烯丙基硅烷不能与相同的富电子烯烃偶联。正在努力了解这种行为并操纵观察到的选择性。

著录项

  • 作者

    Campbell, John M.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号