首页> 外文学位 >Fundamental Limitations of SWNT-MnO2 Heterogeneous Nanostructured Pseudocapacitors.
【24h】

Fundamental Limitations of SWNT-MnO2 Heterogeneous Nanostructured Pseudocapacitors.

机译:SWNT-MnO2异质纳米结构伪电容器的基本局限性。

获取原文
获取原文并翻译 | 示例

摘要

Improvements of electrochemical energy storage devices rely on the understanding of a complex conglomeration of electronic transport, ionic transport, and interfacial interactions between disparate materials. In this work, the complexity of a heterogeneous nanostructured pseudocapacitor is reduced down to an individual single-walled carbon nanotube (SWNT) current collector coated with sub-picograms quantities of an electrochemically deposited pseudocapacitive material, MnO 2. These individual SWNT-MnO2 pseudocapacitors allow for a unique, well-defined system that enables novel, quantitative measurements of the various impedances and structural deformations.;To obtain the device impedances, an equivalent circuit model is used to fit cyclic voltammogram (CV) data for the device resistance R, and capacitance C, as functions of scan rate nu, MnO2 mass loading m, collector surface area A, and collector material. It is found, as expected, that C has a surface component CS that is proportional to m, and a bulk component CB that is proportional to mnu -1/2, and that C does not depend on the collector chemistry or surface area. R is composed of a diffusion controlled (Warburg) component ZW that is proportional to m-1nu-1/2 and a SWNT-MnO2 interfacial component Ri that is proportional to A-1/2. The primary new result of this research is that R i is not sensitive to the collector chemistry so that pristine graphitic carbon, defective graphitic carbon, and Pt all exhibit the same behavior. Furthermore, Ri has an A-1/2 impedance dependence rather than the typical A-1 dependence. In particular, the SWNT, MWNT, and Pt-microelectrode current collectors all exhibited interface resistances of Ri=(93 Ohm-m)A-1/2 for MnO2 charging and Ri=(70 Ohm-m)A-1/2 for discharging. In addition to a detailed study of the interface impedances, this research also investigated MnO2 structural changes using a liquid atomic force microscope coupled to a 3-terminal electrochemical cell. This combined apparatus enabled the investigation of in situ MnO2 volume expansion as a function of the CV voltage window dV , the accumulated charge dQ, and the scan rate nu. The MnO2 volume expansion is found to have a superlinear dependence on dV with a 1% expansion for dV =0.6 V and a 5% expansion for dV =1.4 V.;In addition, the scan rate dependence of the volume expansion follows the same trend as the capacitance and charge; i.e., the total expansion dH, can be broken into two components: dH = dHS + dHB, where dHS is independent of nu and dHB is proportional to nu -1/2. The primary new result of this work is a direct, quantitative measurement of the correlation between dH and dQ, which is shown to have a proportionality or expansion factor of 15 nm/nC. Furthermore, this expansion factor is independent of both dV and nu and it appears to have the same value for both surface and bulk processes.
机译:电化学能量存储设备的改进依赖于对电子传输,离子传输以及不同材料之间的界面相互作用的复杂聚集的理解。在这项工作中,将异质纳米结构的假电容器的复杂性降低到单个亚壁碳纳米管(SWNT)集电器,该集电器上涂有亚皮克数量的电化学沉积假电容器材料MnO2。这些单独的SWNT-MnO2假电容器允许为了获得一个独特的,定义明确的系统,该系统能够对各种阻抗和结构变形进行新颖的定量测量。为了获得器件阻抗,使用等效电路模型拟合器件电阻R的循环伏安图(CV)数据,以及电容C作为扫描速率nu,MnO2质量负载m,集电极表面积A和集电极材料的函数。如所预期的,发现C具有与m成比例的表面成分CS和与mnu -1/2成比例的本体成分CB,并且C不取决于收集剂化学性质或表面积。 R由与m-1nu-1 / 2成比例的扩散控制(Warburg)组分ZW和与A-1 / 2成比例的SWNT-MnO2界面组分Ri组成。该研究的主要新结果是,R i对集电极化学性质不敏感,因此原始石墨碳,次品石墨碳和Pt都表现出相同的行为。此外,Ri具有A-1 / 2阻抗依赖性,而不是典型的A-1阻抗依赖性。特别是,SWNT,MWNT和Pt微电极集电器对MnO2充电均表现为Ri =(93 Ohm-m)A-1 / 2,对于MnO2则表现为Ri =(70 Ohm-m)A-1 / 2放电。除了对界面阻抗的详细研究之外,该研究还使用耦合至3端电化学电池的液体原子力显微镜研究了MnO2的结构变化。该组合设备使得能够根据CV电压窗口dV,累积电荷dQ和扫描速率nu对原位MnO2体积膨胀进行研究。发现MnO2体积膨胀对dV具有超线性依赖性,dV = 0.6 V的膨胀率为1%,dV = 1.4 V的膨胀率为5%;此外,体积膨胀的扫描速率依赖性也遵循相同的趋势作为电容和电荷;即总膨胀量dH可分为两个部分:dH = dHS + dHB,其中dHS与nu无关,而dHB与nu -1/2成比例。这项工作的主要新结果是对dH和dQ之间的相关性进行了直接的定量测量,结果表明其比例或膨胀系数为15 nm / nC。此外,该膨胀系数与dV和nu无关,并且对于表面工艺和本体工艺而言似乎具有相同的值。

著录项

  • 作者

    Corso, Brad.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Physics General.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号