首页> 外文学位 >Silk biomaterials for brain-penetrating devices.
【24h】

Silk biomaterials for brain-penetrating devices.

机译:用于大脑穿透装置的丝绸生物材料。

获取原文
获取原文并翻译 | 示例

摘要

Recent research has positioned direct brain-interfacing technologies, such as the neuroprosthetic control of robotic limbs, at the cusp of clinical reality. However, a significant challenge remains in that current brain-penetrating electrode devices often lose the ability to record stable neuron populations over time. One factor thought to contribute to this lack of chronic reliability is the inflammatory response, known as gliosis, and resulting tissue encapsulation that occurs at the recording site. Device functionality may be improved by enhancing probe biocompatibility through reduction of gliosis around the implant. Silk possesses a unique combination of characteristics, including dynamic, hydration-mediated mechanical properties, and the capacity for delivering sensitive therapeutics, that make it an excellent candidate biomaterial for meeting the challenges specific to brain implants.;In this work, the utility of silk for constructing brain-penetrating devices is investigated across a broad spectrum ranging from basic material properties to biological responses. Various fabrication strategies are employed, which allow for the application of silk coatings to electrodes, as well as for the creation of high-resolution, arbitrarily-shaped silk structures. The buckling mechanics of silk shanks are shown to be sufficient to deliver electrode devices, which otherwise are too flexible, into brain tissue. A study into the real-time, dynamic swelling characteristics of silk films is carried out, providing mechanistic insight into this phenomenon, as well as practical considerations for devices which transition from a dry to hydrated state upon implantation. The response of brain cells to silk materials is assessed using an in vitro model of glial scarring around an implant, with silk coatings shown to elicit a reduced scarring response relative to microwire controls. In addition, silk is shown capable of encapsulating and releasing a sensitive enzyme which further reduces some of the inhibitory aspects of the glial scar. Finally, brain-penetrating silk devices are tested in an animal model, with preliminary results indicating favorable outcomes for silk and functionalized silk devices relative to microwire controls.
机译:最近的研究已将直接的大脑接口技术(例如机械臂的神经修复控制)定位于临床现实的风口浪尖。然而,仍然存在重大挑战,因为当前的穿透大脑的电极设备经常会失去记录稳定的神经元种群的能力。被认为是造成这种长期可靠性不足的一个因素是炎症反应,称为神经胶质增生,以及在记录部位发生的组织包裹。可以通过减少植入物周围的胶质增生来增强探针的生物相容性来改善设备功能。蚕丝具有独特的特性组合,包括动态,水合作用介导的机械性能以及提供灵敏治疗剂的能力,使其成为应对脑植入物特有挑战的极佳候选生物材料。从基本的材料特性到生物学反应,广泛研究了用于构建脑穿透装置的装置。采用了各种制造策略,这些策略允许将丝绸涂层施加到电极上,以及创建高分辨率,任意形状的丝绸结构。丝绸小腿的屈曲力学表现出足以将电极设备(否则太柔软)输送到脑组织中的作用。对丝膜的实时,动态溶胀特性进行了研究,从而对这种现象提供了机械的见解,并为植入后从干燥状态转变为水合状态的器件提供了实用的考虑。使用植入物周围的神经胶质瘢痕形成的体外模型评估脑细胞对丝绸材料的反应,相对于微丝对照,丝绸涂层显示出减少的瘢痕形成反应。另外,显示丝能够包封和释放敏感酶,其进一步减少了神经胶质瘢痕的某些抑制方面。最后,在动物模型中测试了可穿透大脑的丝绸设备,初步结果表明,相对于微丝控件,丝绸和功能化丝绸设备具有良好的效果。

著录项

  • 作者

    Tien, Lee W.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号