首页> 外文学位 >Co-transcriptional splicing and functional role of PKCbeta in insulin-sensitive L6 skeletal muscle cells and 3T3-L1 adipocytes.
【24h】

Co-transcriptional splicing and functional role of PKCbeta in insulin-sensitive L6 skeletal muscle cells and 3T3-L1 adipocytes.

机译:PKCbeta在胰岛素敏感性L6骨骼肌细胞和3T3-L1脂肪细胞中的共转录剪接和功能作用。

获取原文
获取原文并翻译 | 示例

摘要

PKCbetaII is alternatively spliced during acute insulin stimulation in L6 skeletal muscle cells. This PKCbetaII isoform is critical in propagating GLUT4 translocation. PKCbeta protein and promoter dysfunction correlate with human insulin resistance. TZD treatment ameliorates whole-body insulin-resistance. Its primary target is adipocyte PPARgamma, which it activates upon binding. This causes both altered circulating serum FFA concentrations and adipokine secretion profile. How TZDs affect the intracellular signaling of skeletal muscle cells is unknown. RT-PCR and Western blot analysis showed that TZDs elevated PKCbetaII by a process that involves co-transcriptional splicing. PGC1alpha overexpression most closely resembled TZD treatment by increasing PKCbetaII protein levels and keeping PKCbetaI levels relatively constant. Use of a heterologous PKCbeta promoter driven PKCbeta minigene demonstrated that PPARgamma could regulate the PKCbeta promoter, but whether this is direct or indirect is unclear. SRp40 splicing factor has been shown to dock onto the PGC1alpha CTD and influence splicing. SRp40, through overexpression and silencing, appears to play a part in PKCbeta promoter regulation.;PKCbeta promoter regulation was also studied in 3T3-L1 cells. TZDs were experimentally shown to have no role in PKCbeta promoter regulation despite PPARgamma activation. Chromatin immunoprecipitation assays revealed PU.1 as a putative PKCbeta transcription factor that can cross-talk with the spliceosome, possibly through SRp40 which was also associated with the PKCbeta promoter. 3T3-L1 adipocyte differentiation revealed a novel developmentally-regulated switch from PKCbetaI to PKCbetaII, using western blot and Real-Time PCR analysis. Pharmacological inhibition of PKCbetaII using CGP53353 and LY379196 blocked [3H]2-deoxyglucose uptake and revealed a functional role for PKCbetaII in adipocyte ISGT. CGP53353 specifically inhibited phosphorylation of PKCbetaII Serine 660 and not other critical upstream components of the insulin signaling pathway. Subcellular fractionation and PM sheet assay pointed to PKCbetaII-mediated regulation of GLUT4 translocation to the PM. Co-immunoprecipitation between PKCbetaII and GLUT4 allude to possible direct interaction. Western blot and immunofluorescence assays show PKCbetaII activity is linked with Akt Serine 473 phosphorylation, thus full Akt activity. Western blot and co-immunoprecipitation suggested that insulin caused active mTORC2 to directly activate PKCbetaII. Data support a model whereby PKCbetaII is downstream of mTORC2 yet upstream of Akt, thereby regulating GLUT4 translocation.
机译:在L6骨骼肌细胞的急性胰岛素刺激过程中,PKCbetaII也被剪接。此PKCbetaII同工型在传播GLUT4易位中至关重要。 PKCbeta蛋白和启动子功能障碍与人类胰岛素抵抗相关。 TZD治疗可改善全身胰岛素抵抗。它的主要靶标是脂肪细胞PPARgamma,可在结合后激活。这导致循环血清FFA浓度和脂肪因子分泌分布改变。 TZD如何影响骨骼肌细胞的细胞内信号传导尚不清楚。 RT-PCR和蛋白质印迹分析表明,TZD通过涉及共转录剪接的过程提高了PKCbetaII。通过增加PKCbetaII蛋白水平并保持PKCbetaI水平相对恒定,PGC1alpha过表达与TZD治疗最为相似。使用异源PKCbeta启动子驱动的PKCbeta小基因表明,PPARgamma可以调节PKCbeta启动子,但是尚不清楚这是直接还是间接的。 SRp40剪接因子已显示停靠在PGC1alpha CTD上并影响剪接。 SRp40,通过过度表达和沉默,似乎在PKCbeta启动子调控中起作用。; PKCbeta启动子调控也在3T3-L1细胞中进行了研究。实验表明,尽管PPARgamma激活,TZD在PKCbeta启动子调控中没有作用。染色质免疫沉淀分析显示PU.1是一种可能的PKCbeta转录因子,它可能与剪接体发生串扰,可能是通过也与PKCbeta启动子相关的SRp40。 3T3-L1脂肪细胞分化揭示了一种新的发育调控的开关,从PKCbetaI到PKCbetaII,使用蛋白质印迹和实时PCR分析。使用CGP53353和LY379196药理抑制PKCbetaII可以阻止[3H] 2-脱氧葡萄糖的摄取,并揭示了PKCbetaII在脂肪细胞ISGT中的功能性作用。 CGP53353特异性抑制PKCbetaII丝氨酸660的磷酸化,而不抑制胰岛素信号传导途径的其他关键上游成分。亚细胞分级分离和PM表测定法指出PKCbetaII介导的GLUT4易位至PM的调节。 PKCbetaII和GLUT4之间的免疫共沉淀暗示可能存在直接相互作用。 Western印迹和免疫荧光分析表明PKCbetaII活性与Akt丝氨酸473磷酸化相关,因此具有完整的Akt活性。免疫印迹和免疫共沉淀表明胰岛素导致活性mTORC2直接激活PKCbetaII。数据支持一种模型,其中PKCbetaII在mTORC2下游但在Akt上游,从而调节GLUT4易位。

著录项

  • 作者

    Kleiman, Eden.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Biology Molecular.;Chemistry Biochemistry.;Biology Endocrinology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 267 p.
  • 总页数 267
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号