首页> 外文学位 >The Roles of Cell Components in the Photocatalytic Inactivation of Bacteria: Mechanisms and Interactions
【24h】

The Roles of Cell Components in the Photocatalytic Inactivation of Bacteria: Mechanisms and Interactions

机译:细胞组分在细菌的光催化失活中的作用:机制和相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Due to the increasing demand of clean and safe drinking water, numerous alternatives techniques for water purification have been developed. Recently, photocatalysis has been widely considered as the most promising solution for water purification due to its potential to use sun-light to drive the process with a solid catalyst and achieve disinfection with less or even no disinfection byproducts (DBP) formation. Under specific light irradiation on the photocatalyst, reactive charged and oxidative species (ROS) are generated and can cause fatal damage to microorganisms. However, the photocatalytic microbial inactivation mechanism has still not been well established.;Therefore, this study systematically investigated the roles of bacterial cell components from the outmost layer of capsular (extracellular polymeric substances) EPS, followed by the middle layer of cell membrane, finally to the most innermost core of the intracellular organic matters (IOM) in the photocatalytic inactivation and interaction between cell and nano-size photocatalyst (TiO2) using different approaches.;Firstly, we investigated the role of the EPS in the photocatalytic inactivation and photocatalyst-cell interaction mechanisms by comparing wild type Escherichia coli BW25113 and its isogenic mutants with up-regulated and down-regulated production of capsular EPS. The combined results of non-partition system and partition system suggested that, although the capsular EPS can protect the bacterial cell by consuming photo-generated reactive species, it also facilitated the photocatalytic inactivation by promoting the adhesion of TiO2 particles on the cell surface. The fluorescence microscopic and scanning electron microscopic analyses further confirmed that high capsular EPS density lead to the more TiO2 particles attaching onto cells forming bacteria-TiO2 aggregates. Furthermore, the interaction energy, represented by extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) potential, was also calculated to reveal the interaction profiles between cells and TiO 2 particles. Results indicated that the presence of capsular EPS enhanced the attachment of TiO2 particles towards bacterial cells via the dominating acid-base (hydrophobic) interaction.;Secondly, we investigated the interaction between TiO2 nanoparticles and biological membranes using bacterial ghosts (BGs) as a model and 2D-COS-FTIR techniques. Results indicated that functionalities of cell membrane protein preferentially interacted with TiO2 nanoparticles; whereas the interaction of TiO2 nanoparticles with C--OH (polysaccharides) and P=O (phospholipids) were very weak or insensitive. This result was corroborated with settling experiments using standard proteins, polysaccharides and phospholipids. Additionally, the asynchronous map of 2DCOS indicates a sequential order of functionalities bonded to TiO2 nanoparticles: COO- > aromatic C=C stretching > N-H, amide II > C=O, ketone.;Finally, we evaluated the released organic matter during the photocatalytic inactivation process using fractionation procedure that separate the bacteria cell into IOM and cell debris. Spectroscopic analysis including absorbance spectrum and fluorescence excitation-emission-matrix (EEM) combined with paralleled factor analysis (PARAFAC) were used to characterize the released organic matters. On the whole, results indicated that the released organic maters mainly derived from the intracellular during the photocatalytic inactivation process. Specifically, four fluorescence components were identified by the EEM-PARAFAC analysis during the photocatalytic inactivation of bacteria. Two components (C1 and C3) were associated with tryptophan-containing and tyrosine-containing proteins, and the other two (C2 and C4) were postulated to be the oxidation products of C1 and C3, respectively.;Besides, these released organic matters would be either absorbed on the surface of the photocatalysts or consume the photo-generated ROS to decelerate the inactivation processes reflected by a plateau in the inactivation curve ("tailing"). Moreover, the bulk total organic carbon (TOC) and total nitrogen (TN) measurement results implied that the mineralization of the released organic compound was much slower than complete inactivation of bacteria and no removal of TN would occurred, thus leading to high TN/TOC ratio in the resultant water.;This research revealed the roles of different cell components, from the outmost layer to the inner core of bacterial cells, in the photocatalytic bacterial inactivation and bacterial cell-photocatalysts interaction. The results obtained in this study have significant implications not only in the photocatalytic inactivation technology, but also in the fate and transformation of TiO2 nanoparticles and bacteria in natural and engineered system.
机译:由于对清洁和安全饮用水的需求不断增长,已经开发了许多用于水净化的替代技术。近年来,光催化技术被广泛认为是最有前途的水净化解决方案,因为它有潜力利用阳光驱动固体催化剂并实现消毒,而形成的消毒副产物很少甚至没有。在光催化剂上的特定光照射下,会生成反应性带电和氧化性物质(ROS),并可能对微生物造成致命伤害。然而,光催化微生物的失活机理尚未得到很好的建立。因此,本研究系统地研究了荚膜(细胞外聚合物)EPS最外层,其次是细胞膜中间层的细菌细胞成分的作用。到细胞内有机物(IOM)的最内层核心,采用不同的方法进行光催化失活以及细胞与纳米级光催化剂(TiO2)之间的相互作用。首先,我们研究了EPS在光催化失活和光催化剂中的作用-通过比较野生型大肠杆菌BW25113及其同基因突变体与荚膜EPS产生上调和下调的细胞相互作用机制。非分隔系统和分隔系统的综合结果表明,尽管荚膜EPS可以通过消耗光生反应性物质来保护细菌细胞,但它也可以通过促进TiO2颗粒在细胞表面的粘附来促进光催化失活。荧光显微镜和扫描电子显微镜分析进一步证实,高荚膜EPS密度导致更多的TiO2颗粒附着在形成细菌TiO2聚集体的细胞上。此外,还计算了以扩展的Derjaguin-Landau-Verwey-Overbeek(XDLVO)势为代表的相互作用能,以揭示细胞与TiO 2颗粒之间的相互作用曲线。结果表明荚膜EPS的存在通过主要的酸碱(疏水)相互作用增强了TiO2颗粒对细菌细胞的附着。;其次,我们以细菌幽灵(BGs)为模型研究了TiO2纳米颗粒与生物膜之间的相互作用。和2D-COS-FTIR技术。结果表明,细胞膜蛋白的功能优先与TiO2纳米颗粒相互作用。 TiO2纳米粒子与C-OH(多糖)和P = O(磷脂)的相互作用非常弱或不敏感。使用标准蛋白质,多糖和磷脂进行的沉淀实验证实了这一结果。此外,2DCOS的异步图表明与TiO2纳米颗粒键合的功能的顺序顺序:COO->芳族C = C拉伸> NH,酰胺II> C = O,酮;最后,我们评估了光催化过程中释放的有机物使用分馏程序将细菌细胞分离为IOM和细胞碎片的灭活过程。使用吸收光谱和荧光激发-发射矩阵(EEM)的光谱分析结合并行因子分析(PARAFAC)来表征释放的有机物。总体而言,结果表明,在光催化失活过程中,释放的有机物主要来源于细胞内。具体而言,在细菌的光催化失活过程中,通过EEM-PARAFAC分析鉴定了四个荧光成分。假定两个组分(C1和C3)与含色氨酸和含酪氨酸的蛋白质有关,另外两个组分(C2和C4)分别被假定为C1和C3的氧化产物。要么被吸收在光催化剂的表面上,要么被光生的ROS消耗,从而使失活曲线中的平稳期所反映的失活过程减速(“拖尾”)。此外,总有机碳(TOC)和总氮(TN)的测量结果表明,释放的有机化合物的矿化比细菌完全失活要慢得多,并且不会发生TN的去除,因此导致TN / TOC高这项研究揭示了从细菌细胞的最外层到内部核心的不同细胞组分在光催化细菌灭活和细菌细胞-光催化剂相互作用中的作用。这项研究中获得的结果不仅对光催化灭活技术有重要意义,而且对天然和工程系统中TiO2纳米颗粒和细菌的命运和转化也具有重要意义。

著录项

  • 作者

    Huang, Guocheng.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Environmental science.;Microbiology.;Water resources management.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号