首页> 外文学位 >Fluid-structure Interaction Analysis of Implantable Axial Flow Blood Pump Impeller for Fontan Patients
【24h】

Fluid-structure Interaction Analysis of Implantable Axial Flow Blood Pump Impeller for Fontan Patients

机译:丰坦患者植入式轴流血泵叶轮的流固耦合分析

获取原文
获取原文并翻译 | 示例

摘要

Infants who are born with cardiac defects that are characterized as a single ventricle physiology face numerous physiological complications, such as early-onset congestive heart failure, thrombosis, arrhythmias, and protein losing enteropathy. Clinical treatment and management costs for this cohort of patients exceed $1 billion/year. It is theorized a systemic pressure boost of 1-5mmHg is sufficient to alleviate many of these complications, and there is a growing interest in the use of blood pumps as a bridge therapy to heart transplantation. Currently available blood pumps have limited use in these patients because they are large and designed for adults. A major constraint of current pumps is the diameter, rigid fixed-blade designs and off-design operation due to the rigid designs, which leads to irregular flow patterns, inefficient performance, and blood damage. The presented study investigates the use of flexible blade designs to begin working toward the design of a minimally invasive blood pump with blade pitch adjusting capabilities. Using one-way fluid-structure interaction (FSI) computational studies, the implications of blade deformation on pump performance and blood damage was investigated for flexible impellers made from biocompatible materials such as nitinol, polyurethane, and silicone. It was found that rotational speed is the largest determinant of impeller deformation and the maximum deformation occurred at the blade trailing edge. The models predicted the maximum impeller deformation for nitinol to be 40nm, Bionate 80A polyurethane to be 106um, and silicone to be 2.8 mm, all occurring at 9000 RPM from 15 kPa of fluid pressure on the trailing edge of the impeller blade. The effects of silicone deformation on pump performance was significant, particularly at rotational speeds above 5000 RPM where a decrease in pressure generation of more than 10% was observed for all rotational speeds. Despite the loss, pressure generation still exceeded the level required to alleviate Fontan complications and with proper characterization the loss could be overcome through optimization of operating conditions. The estimated blood damage observed for all materials tested at all operational conditions remained below a level acceptable for blood pumps. The contributing effect of significant impeller deformation on blood damage was inconsistent and requires additional investigation because deformation did reduce blood damage metrics in some circumstances, something that could be leveraged in the future with further study. These results support the continued development of an axial-flow, mechanical assist device as a new clinical therapeutic option for patients with dysfunctional or failing single ventricle physiology.
机译:天生具有单一心室生理学特征的心脏缺陷的婴儿面临许多生理学并发症,例如早发性充血性心力衰竭,血栓形成,心律不齐和蛋白质丢失性肠病。该组患者的临床治疗和管理费用每年超过10亿美元。从理论上讲,增加1-5mmHg的全身压力足以缓解许多这些并发症,并且人们越来越关注使用血泵作为心脏移植的桥梁疗法。当前可用的血泵在这些患者中的使用受到限制,因为它们很大并且专为成人设计。当前泵的主要限制因素是直径,刚性的固定叶片设计和由于刚性设计而导致的非设计操作,这导致不规则的流动模式,低效的性能和血液损害。本研究调查了使用柔性叶片设计开始着手设计具有叶片间距调节功能的微创血泵的方法。使用单向流固耦合(FSI)计算研究,研究了叶片变形对泵性能和血液损害的影响,这些叶轮是由生物相容性材料(如镍钛合金,聚氨酯和硅树脂)制成的挠性叶轮的。发现转速是决定叶轮变形的最大因素,最大变形发生在叶片后缘。这些模型预测,镍钛诺的最大叶轮变形为40nm,Bionate 80A聚氨酯的最大叶轮变形为106um,硅酮的最大变形为2.8mm,这一切都是由于叶轮叶片后缘的15 kPa流体压力在9000 RPM下发生的。有机硅变形对泵性能的影响非常明显,特别是在转速高于5000 RPM的情况下,在所有转速下,压力产生的下降均超过10%。尽管有损失,但压力的产生仍然超过了减轻Fontan并发症所需的水平,通过适当的表征,可以通过优化操作条件来克服损失。在所有操作条件下对所有测试材料观察到的估计血液损害均保持在血泵可接受的水平以下。叶轮明显变形对血液损害的贡献是不一致的,需要进一步研究,因为在某些情况下变形确实会降低血液损害指标,将来有可能在以后的研究中加以利用。这些结果支持了轴流式机械辅助设备的不断开发,该设备将成为功能异常或单心室生理功能衰竭的患者的新临床治疗选择。

著录项

  • 作者

    Hirschhorn, Matthew D.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Biomedical engineering.;Medicine.;Mechanical engineering.
  • 学位 M.S.
  • 年度 2018
  • 页码 88 p.
  • 总页数 88
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号