首页> 外文学位 >The Structure of Boundary Layer Along a Vertical, Surface-Piercing Flat Plate
【24h】

The Structure of Boundary Layer Along a Vertical, Surface-Piercing Flat Plate

机译:沿垂直表面穿孔平板的边界层结构

获取原文
获取原文并翻译 | 示例

摘要

The present work reports on Direct Numerical Simulations of a temporally developing, zero pressure gradient, turbulent boundary along a surface piercing flat plate and its interaction with the free surface. The simulations were driven by experiments of the same flow regime. Three separate Froude numbers were considered in increasing order. Consequently the interface progresses from a rigid and undisturbed surface to one with violent eruptions, breaking waves and air entrainment. At the lowest Froude number where the surface stays flat, the simulations agreed well with prior studies and captured the recirculation regions in the cross-stream plane which are shown to be due to Reynolds stress anisotropy. At intermediate Froude numbers it was found that the main source of vorticity beneath the surface is not the Reynolds stress anisotropy but rather the vorticity generated at the interface. This vorticity was found to affect turbulent statistics including distribution of friction velocity and the slope of the log-law layer. Moreover, the present work shows that the surface generated vorticity interacts mainly with eddies of small and intermediate wave numbers and the smaller scales with high wave numbers remain intact.;Air entrainment due to turbulence was also investigated. With the aid of a prototypical problem the parameters that play a role in entrainment are established. A novel approach to quantify the turbulent structures was defined. Using this method, turbulent structures were categorized into entraining and non-entraining vortices. A Linear Logistic Regression model was trained and validated to help predict future entrainment events. The model performs well and can accurately predict entrainment events for both the turbulent regime and the prototypical problem.
机译:本工作报道了沿表面穿孔平板的沿时发展,零压力梯度,湍流边界及其与自由表面相互作用的直接数值模拟。模拟是由相同流态的实验驱动的。依次考虑了三个独立的弗洛德数。因此,界面从坚硬,不受干扰的表面发展为剧烈爆发,破裂波和夹带空气的表面。在表面保持平坦的最低弗洛德数下,模拟与先前的研究非常吻合,并捕获了横流平面中的回流区域,这被认为是由于雷诺应力各向异性所致。在中间弗洛德数下,发现在表面之下的涡旋的主要来源不是雷诺应力各向异性,而是在界面处产生的涡旋。发现这种涡旋会影响湍流统计,包括摩擦速度的分布和对数律层的斜率。此外,目前的工作表明,表面产生的涡旋主要与中小波数的涡流相互作用,而高波数的小尺度则保持不变。;还研究了湍流引起的空气夹带。借助于一个典型的问题,确定了在夹带中起作用的参数。定义了一种量化湍流结构的新颖方法。使用这种方法,湍流结构分为夹带涡流和非夹带涡流。对线性逻辑回归模型进行了训练和验证,以帮助预测未来的夹带事件。该模型运行良好,可以准确预测湍流状态和原型问题的夹带事件。

著录项

  • 作者

    Nasiri, Farshad.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Fluid mechanics.;Engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号