首页> 外文学位 >Development of Antimonide-based Energy-sensitive Radiation Detectors
【24h】

Development of Antimonide-based Energy-sensitive Radiation Detectors

机译:基于锑的能量敏感辐射探测器的开发

获取原文
获取原文并翻译 | 示例

摘要

This dissertation is devoted to studying radiation response of the antimonide (Sb)-based detectors and investigating the energy-resolving capability of the integrated GaSb/AlAsSb device structures for X-ray and gamma-ray spectrometry. Energy-sensitive radiation detectors have been extensively employed in applications including material characterization, biomedical research, and homeland security. The unique properties of Sb-based materials could enable an increased flexibility in using the technology for versatile applications. This work attempts to take advantage of Sb-based materials and utilize the heterostructure device concept to achieve this type of radiation detectors. The device development begins with investigating the radiation response of GaSb PIN device, and the energy-sensitive detection has been demonstrated for the first time. With a measurement temperature of 140 K, the device exhibits a full-width-at-half-maximum (FWHM) of 1.238 keV and 1.789 keV at 5.9 keV and 59.5 keV, respectively. The obtained energy resolution has been studied in detail to provide feedback on device design consideration. The heterostructure device architecture has been first approached with the GaSb/GaAs material system using the interfacial misfit (IMF) technique. While the devices show a low dark current floor at room-temperature, the potential barrier induced by the interface charges at the IMF arrays has prevented the effective collection of the carrier generated in the GaSb absorber. The lattice-matched AlAsSb alloy is then investigated as an alternative candidate to replace GaAs for the large-bandgap junction region. Digital-alloy growth of AlAsSb has been developed and gives enhanced optical and electrical characteristics in comparison to the traditional random-alloy growth. Finally, the heterostructure device for energy-sensitive radiation detection has been realized by integrating the GaSb absorber and the AlAsSb digital-alloy combined with a field-control layer to optimize the electric field profile. Well-defined X-ray and gamma-ray photopeaks are successfully obtained by the GaSb/AlAsSb devices under exposure to 241Am radioactive sources. The spectroscopic characterization shows improvement in the extracted excess noise component in comparison to the PIN structure by effectively eliminating the high peak electric field and surface recombination. The minimum FWHM of 1.283 keV at 59.5 keV has been achieved, and measured energy resolution is limited by the noise from the readout electronics rather than the detector material.
机译:本论文致力于研究基于锑的探测器的辐射响应,并研究集成化的GaSb / AlAsSb器件结构的X射线和γ射线能谱分辨能力。能量敏感型辐射探测器已广泛应用于包括材料表征,生物医学研究和国土安全的应用中。锑基材料的独特性能可以使该技术在多种应用中具有更大的灵活性。这项工作试图利用基于锑的材料,并利用异质结构器件的概念来实现这种类型的辐射探测器。该设备的开发始于研究GaSb PIN设备的辐射响应,并且首次展示了对能量敏感的检测。在140 K的测量温度下,该器件在5.9 keV和59.5 keV时的半峰全宽(FWHM)分别为1.238 keV和1.789 keV。已对获得的能量分辨率进行了详细研究,以提供有关器件设计考虑的反馈。 GaSb / GaAs材料系统首先使用界面失配(IMF)技术来处理异质结构器件架构。尽管设备在室温下显示出较低的暗电流本底,但由IMF阵列上的界面电荷感应的势垒已阻止了GaSb吸收器中产生的载流子的有效收集。然后研究晶格匹配的AlAsSb合金作为替代GaAs的大带隙结区域的替代候选材料。与传统的随机合金生长相比,已经开发出AlAsSb的数字合金生长,并具有增强的光学和电气特性。最后,通过将GaSb吸收剂和AlAsSb数字合金与场控制层结合在一起以优化电场分布,实现了用于能量敏感辐射检测的异质结构器件。 GaSb / AlAsSb器件在暴露于241Am放射源的情况下成功获得了清晰的X射线和伽马射线峰。通过有效地消除高峰值电场和表面重组,与PIN结构相比,光谱表征显示出提取的多余噪声成分有所改善。在59.5 keV时已达到1.283 keV的最小FWHM,并且所测量的能量分辨率受到来自读取电子设备而非检测器材料的噪声的限制。

著录项

  • 作者

    Juang, Bor-Chau.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号