首页> 外文学位 >Hydrothermal circulation and geochemical processing on carbonaceous chondrite parent bodies.
【24h】

Hydrothermal circulation and geochemical processing on carbonaceous chondrite parent bodies.

机译:碳质球粒陨石母体的热液循环和地球化学处理。

获取原文
获取原文并翻译 | 示例

摘要

Carbonaceous chondrites are a suite of primitive meteorites with bulk chemical compositions that closely resemble solar values for non-volatile elements. On this basis, carbonaceous chondrites are considered among the most primitive materials available for study and, therefore, a critical source of information on the formation and evolution of our planetary system. However, despite carbonaceous chondrites' primitive traits, mineralogical and isotopic observations indicate that most have been modified by geochemical processing of their parent bodies. Therefore, although they possess a primitive bulk chemistry, it is clear that carbonaceous chondrites are not pristine samples. In particular, the compositions of the CI and CM chondrite groups provide abundant evidence of processing by aqueous alteration. Detailed studies of these chondrites reveal a complex formation history, involving periods of mineral dissolution, precipitation, and oxygen isotope exchange due to interactions with fluids. Consequently, the primary mineralogy and oxygen isotopic compositions of these objects have been erased. Deciphering the information provided by carbonaceous chondrites requires a thorough understanding not only of their current characteristics, but also of how these characteristics were produced. Traditionally, alteration models have been founded upon an assumption of uniform alteration in a closed system. In these models, there is no fluid circulation and different chondrite groups must originate on separate parent bodies. Until recently, little work has been done to investigate the consequences of fluid flow and chemical reactions in carbonaceous chondrite parent bodies. This study presents a new numerical model of hydrothermal circulation in carbonaceous chondrite parent bodies that tracks fluid flow, transport, geochemical reactions, and isotope exchange. The results support the idea that distinct chondrite groups could form at different locations within the same body and are not required to originate on separate parent bodies. These findings suggest that the origin of carbonaceous chondrites and the a priori assumption of closed system alteration should be re-evaluated by future studies.
机译:碳质球粒陨石是一组原始的陨石,其化学组成与非挥发性元素的日照值非常相似。在此基础上,碳质球粒陨石被认为是可用于研究的最原始材料之一,因此,它是有关我们行星系统形成和演化的重要信息来源。然而,尽管碳质球粒陨石具有原始特征,但矿物学和同位素观察表明,大多数碳酸盐球母都经过了对其母体的地球化学处理而被修饰。因此,尽管它们具有原始的本体化学性质,但显然碳质球粒陨石不是原始样品。特别地,CI和CM球粒陨石基团的组成提供了通过水蚀改变进行加工的大量证据。对这些球粒陨石的详细研究揭示了复杂的形成历史,涉及矿物溶解,沉淀和由于与流体相互作用而引起的氧同位素交换的时期。因此,这些物体的主要矿物学和氧同位素组成已被消除。解读碳质球粒陨石提供的信息不仅需要全面了解其当前特征,还需要全面了解这些特征的产生方式。传统上,变更模型是基于封闭系统中统一变更的假设而建立的。在这些模型中,没有流体循环,并且不同的球粒陨石群必须起源于单独的母体。直到最近,有关碳质球粒陨石母体中流体流动和化学反应的后果的研究还很少。这项研究提出了碳质球粒陨石母体中水热循环的新数值模型,该模型可以跟踪流体的流动,传输,地球化学反应和同位素交换。结果支持这样的想法,即不同的球粒陨石群可以在同一物体的不同位置形成,并且不需要起源于单独的父物体。这些发现表明,碳质球粒陨石的起源和封闭系统变化的先验假设应该由未来的研究重新评估。

著录项

  • 作者

    Palguta, Jennifer Lynn.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Geophysics.;Geochemistry.;Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号