首页> 外文学位 >Nanoindentation Investigation of FIB-Milled Microstructures to Assess Failure Properties of Cement Paste at Microscale
【24h】

Nanoindentation Investigation of FIB-Milled Microstructures to Assess Failure Properties of Cement Paste at Microscale

机译:纳米压痕研究FIB铣削微结构以评估水泥浆在微观尺度上的破坏性能

获取原文
获取原文并翻译 | 示例

摘要

A mechanical test methodology using Focused Ion Beam (FIB) milled micropillars and nanoindentation is developed to investigate the failure mechanism of cement paste at the level of calcium-silicate-hydrates (C-S-H), the primary binding phase of concrete. Cement paste is a hierarchical material with different levels spanning the range from nanometers to hundreds of micrometers. C-S-H is primarily responsible for strength and other mechanical properties of cement based materials. Therefore, a fundamental understanding and quantification of the failure behavior of C-S-H at microscale is critical for understanding failure at larger scales. Current experimental techniques, however, are unable to reveal how compressive failure is initiated within the cement paste microstructure. Therefore, a need exists for the development of a robust experimental method that can characterize compressive strength and failure modes of C-S-H.;To address this need, a novel methodology - uniaxial compression of cement micropillars is developed in this thesis. Micropillar geometries are fabricated by focused ion beam milling on potential calcium silicate hydrate (C-S-H) locations identified through coupled backscatter electron imaging (BSE) and energy dispersive spectroscopy (EDS) spot analysis. Uniaxial compression testing of these pillars is performed using nanoindentation equipment. The compressive strength of C-S-H (181-715 MPa) measured from micro-compression tests is found to be consistent with values from multiscale damage and molecular dynamic models in literature. Three primary deformation mechanisms at failure were identified; axial splitting, shearing and plastic crushing of the micropillar were mainly observed. Micro-compression experiments on C-S-H micropillars of varying diameters indicated presence of a size effect with strong increase in strength with decreasing diameter. The deformation mode at failure also exhibited size effect: the dominant failure mode changed from axial splitting to crushing as the pillar diameter was decreased. Compressive strength of C-S-H measured from cement pastes with varying w/c ratio, on the other hand, did not show any significant variation, and thus is identified as independent of composition of the cement paste. Overall, the results of this pioneering work provide valuable insight about origin of strength in cementitious materials, and can be incorporated into multiscale strength homogenization and numerical models for better predicting quasi-brittle failure of cement pastes, mortars and concrete.
机译:开发了一种使用聚焦离子束(FIB)磨碎的微柱和纳米压痕的机械测试方法,以研究水泥浆在硅酸钙水合物(C-S-H)含量(混凝土的主要粘结相)水平下的破坏机理。水泥浆是一种分层的材料,其含量从纳米到数百微米不等。 C-S-H主要负责水泥基材料的强度和其他机械性能。因此,对C-S-H在微观尺度上的失效行为的基本了解和量化对于在更大范围内理解失效至关重要。但是,当前的实验技术无法揭示水泥浆体微结构内部是如何引发压缩破坏的。因此,需要开发一种能够表征C-S-H抗压强度和破坏模式的稳健实验方法。为了解决这一需求,本文开发了一种新的方法-水泥微桩的单轴压缩。微柱几何结构是通过聚焦离子束铣削在潜在的水合硅酸钙(C-S-H)位置上制造的,该位置通过耦合背散射电子成像(BSE)和能量色散光谱(EDS)点分析确定。使用纳米压痕设备对这些支柱进行单轴压缩测试。通过微压缩试验测得的C-S-H的抗压强度(181-715 MPa)与文献中的多尺度损伤和分子动力学模型的值一致。确定了三种主要的变形变形机理。主要观察到了微柱的轴向劈裂,剪切和塑性破碎。在不同直径的C-S-H微型柱上进行的微压缩实验表明,存在尺寸效应,随着直径的减小,强度会大大增加。破坏时的变形模式也表现出尺寸效应:随着支柱直径的减小,主要破坏模式从轴向分裂变为破碎。另一方面,由具有变化的w / c比的水泥浆测得的C-S-H的抗压强度没有显示任何明显的变化,因此被确定为与水泥浆的成分无关。总的来说,这项开创性工作的结果为有关胶结材料强度起源的研究提供了宝贵的见解,并且可以纳入多尺度强度均质化和数值模型中,以更好地预测水泥浆,砂浆和混凝土的准脆性破坏。

著录项

  • 作者

    Shahrin, Rahnuma.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Civil engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号