首页> 外文学位 >Experimental Investigation and Theoretical Modeling of Ultrashort Pulse Laser Ablation
【24h】

Experimental Investigation and Theoretical Modeling of Ultrashort Pulse Laser Ablation

机译:超短脉冲激光烧蚀的实验研究与理论建模

获取原文
获取原文并翻译 | 示例

摘要

Ultrashort pulse laser ablation has opened doors to many applications that require very high accuracy and precision. To fully harness the potential of these systems an optimized process and an adapted process strategy is required. For surface structuring, it can be shown that for metals and many other materials, the ablation process shows maximum efficiency at optimum fluence. The corresponding material removal rate depends on the threshold fluence and the energy penetration depth of that material. For achieving high efficiency and high machining quality it is necessary to maintain optimum working conditions consistently. Laser ablation depends on several parameters such as pulse width, frequency, scanning speed, overlap ratios, etc., precise control of these parameters is essential to obtain a superior quality cut.;The author has done a thorough review on theoretical modeling on the fundamental mechanisms of laser ablation, including Two Temperature Model (TTM), Molecular Dynamic (MD) Simulation and MD coupled with TTM, as well as Hydrodynamic Model. These models significantly advance the basic understanding of the laser ablation process. One of the most important findings of the fundamental research is the discovery of the logarithmic ablation law which relates the ablation depth with the applied fluence &phis;, the threshold fluence of the material &phis;th and the energy penetration depth delta. A simple mechanistic surface generation model was developed based on the logarithmic ablation law. The model predicts the ablation depth within 20% error using the material constants calibrated from the literature. If properly calibrated, the modeling accuracy can be further improved. The surface roughness cannot be accurately predicted due to significant stochastic components on the surface generation that were not accounted for in the mechanistic model. In general, with a 3W Coherent Helios laser with 532nm wavelength, the ablation depth per pulse of steel is between 7nm to 14nm when the pulse energy increases from 5 to 50 microjoules if the Gaussian beam has a spot size of 30 microns. Both the pulse energy and spot size can be modulated by adjusting the optical components. An accurate process model is critical in creating 3D features using ultra-short pulse laser ablation. These simulation models are robust and can be used for any material just by using the appropriate ablation threshold and energy penetration depth values of that material. Finally, the author has carried out a series controlled experiments to investigate some process parameters that could influence the surface roughness, including the laser pulse frequency, laser pulse width, scanning speed of the scan head, and size of step over between adjacent scan paths. For the laser system developed in house, the optimal combination to achieve the best surface quality is as follows: pulse frequency 20 KHz, pulse width 15 microseconds, overlap ratio in both scanning direction and cross direction to be around 40% and scanning speed of 300 mm/s. With the optimal process conditions, the author successfully created a series of miniature trapezoidal features on the sidewall of the piston rings. These surface textures are reported to significantly improve the tribological performance of the piston ring and significantly reduce the friction loss during the combustion processes.
机译:超短脉冲激光烧蚀为许多需要非常高的精度和精确度的应用打开了大门。为了充分利用这些系统的潜力,需要优化的过程和适应的过程策略。对于表面结构化,可以证明,对于金属和许多其他材料,烧蚀过程在最佳通量下显示出最高效率。相应的材料去除率取决于该材料的阈值通量和能量渗透深度。为了实现高效率和高加工质量,必须始终保持最佳的工作条件。激光烧蚀取决于多个参数,例如脉冲宽度,频率,扫描速度,重叠率等,对这些参数的精确控制对于获得出色的质量切割至关重要。激光烧蚀的机理,包括两个温度模型(TTM),分子动力学(MD)模拟和与TTM耦合的MD以及流体动力学模型。这些模型大大提高了对激光烧蚀过程的基本了解。基础研究的最重要发现之一是发现了对数烧蚀定律,该定律将烧蚀深度与所应用的注量φ,材料的阈值注量φ和能量穿透深度增量联系起来。基于对数烧蚀定律建立了一个简单的机械表面生成模型。该模型使用从文献中校准的材料常数在20%误差范围内预测烧蚀深度。如果正确校准,可以进一步提高建模精度。由于机械模型中未考虑的表面生成过程中的大量随机成分,因此无法准确预测表面粗糙度。通常,对于波长为532nm的3W相干Helios激光器,如果高斯光束的光斑大小为30微米,则当脉冲能量从5微焦耳增加到50微焦耳时,钢的每个脉冲的烧蚀深度在7nm至14nm之间。脉冲能量和光斑尺寸均可通过调节光学组件进行调制。准确的过程模型对于使用超短脉冲激光烧蚀创建3D特征至关重要。这些仿真模型很健壮,仅通过使用适当的烧蚀阈值和该材料的能量穿透深度值即可将其用于任何材料。最后,作者进行了一系列受控实验,研究了一些可能影响表面粗糙度的工艺参数,包括激光脉冲频率,激光脉冲宽度,扫描头的扫描速度以及相邻扫描路径之间的跨步大小。对于内部开发的激光系统,实现最佳表面质量的最佳组合如下:脉冲频率20 KHz,脉冲宽度15微秒,扫描方向和横向的重叠率约为40%,扫描速度为300毫米/秒在最佳工艺条件下,作者成功地在活塞环的侧壁上创建了一系列微型梯形特征。据报道,这些表面纹理可显着改善活塞环的摩擦学性能,并显着降低燃烧过程中的摩擦损失。

著录项

  • 作者

    Patole, Swapnil.;

  • 作者单位

    Lamar University - Beaumont.;

  • 授予单位 Lamar University - Beaumont.;
  • 学科 Industrial engineering.;Mechanical engineering.
  • 学位 D.E.
  • 年度 2018
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号