首页> 外文学位 >Development of Carbon Sequestration Options by Studying Carbon Dioxide-Methane Exchange in Hydrates.
【24h】

Development of Carbon Sequestration Options by Studying Carbon Dioxide-Methane Exchange in Hydrates.

机译:通过研究水合物中的二氧化碳-甲烷交换来开发碳固存选项。

获取原文
获取原文并翻译 | 示例

摘要

Gas hydrates form naturally at high pressures (>4 MPa) and low temperatures (<4 °C) when a set number of water molecules form a cage in which small gas molecules can be entrapped as guests. It is estimated that about 700,000 trillion cubic feet (tcf) of methane (CH4) exist naturally as hydrates in marine and permafrost environments, which is more than any other natural sources combined as CH4 hydrates contain about 14 wt% CH4. However, a vast amount of gas hydrates exist in marine environments, which makes gas extraction an environmental challenge, both for potential gas losses during extraction and the potential impact of CH4 extraction on seafloor stability. From the climate change point of view, a 100 ppm increase in atmospheric carbon dioxide (CO2) levels over the past century is of urgent concern. A potential solution to both of these issues is to simultaneously exchange CH4 with CO 2 in natural hydrate reserves by forming more stable CO2 hydrates. This approach would minimize disturbances to the host sediment matrix of the seafloor while sequestering CO2. Understanding hydrate growth over time is imperative to prepare for large scale CH4 extraction coupled with CO2 sequestration.;In this study, we performed macroscale experiments in a 200 mL high-pressure Jerguson cell that mimicked the pressure-temperature conditions of the seafloor. A total of 13 runs were performed under varying conditions. These included the formation of CH4 hydrates, followed by a CO2 gas injection and CO2 hydrate formation followed by a CH4 gas injection. Results demonstrated that once gas hydrates formed, they show "memory effect" in subsequent charges, irrespective of the two gases injected. This was borne out by the induction time data for hydrate formation that reduced from 96 hours for CH4 and 24 hours for CO2 to instant hydrate formation in both cases upon injection of a secondary gas. During the study of CH4-CO2 exchange where CH4 hydrates were first formed and CO2 gas was injected into the system, gas chromatographic (GC) analysis of the cell indicated a pure CH4 gas phase, i.e., all injected CO2 gas entered the hydrate phase and remained trapped in hydrate cages for several hours, though over time some CO2 did enter the gas phase. Alternatively, during the CH 4-CO2 exchange study where CO2 hydrates were first formed, the injected CH4 initially entered the hydrate phase, but quickly gaseous CO2 exchanged with CH4 in hydrates to form more stable CO2 hydrates. These results are consistent with the better thermodynamic stability of CO2 hydrates, and this appears to be a promising method to sequester CO2 in natural CH4 hydrate matrices.;The macroscale study described above was complemented by a microscale study to visualize hydrate growth. This first-of-its-kind in-situ study utilized the x-ray computed microtomography (CMT) technique to visualize microscale CO2, CH4, and mixed CH 4-CO2 hydrate growth phenomenon in salt solutions in the presence or absence of porous media. The data showed that under the experimental conditions used, pure CH4 formed CH4 hydrates as mostly spheres, while pure CO2 hydrates were more dendritic branches. Additionally, varying ratios of mixed CH4-CO2 hydrates were also formed that had needle-like growth. In porous media, CO2 hydrates grew, consistent with known growth models in which the solution was the sediment wetting phase. When glass beads and Ottawa sand were used as a host, the system exhibited pore-filling hydrate growth, while the presence of liquid CO2 and possible CO2 hydrates in Ottawa sand initially were pore-filling that over time transformed into a grain-displacing morphology. The data appears promising to develop a method that would supplant our energy supply by extracting CH4 from naturally occurring hydrates while CO2 is sequestered in the same formations.
机译:当一定数量的水分子形成一个笼子时,气体水合物会在高压(> 4 MPa)和低温(<4°C)时自然形成,小分子气体可以作为来宾夹带在其中。据估计,海洋和多年冻土环境中自然以水合物的形式自然存在约700,000万亿立方英尺(tcf)的甲烷(CH4),这比任何其他自然资源的总和还多,因为CH4水合物包含约14 wt%的CH4。然而,在海洋环境中存在大量的气体水合物,这使得气体提取成为环境挑战,这既涉及提取期间的潜在气体损失,也涉及CH4提取对海底稳定性的潜在影响。从气候变化的角度来看,在过去的一个世纪中,大气中二氧化碳(CO2)含量增加了100 ppm成为当务之急。这两个问题的潜在解决方案是通过形成更稳定的CO2水合物,同时将CH4与天然水合物储量中的CO 2交换。这种方法将在隔离CO2的同时将对海底宿主沉积物基质的干扰降到最低。了解随着时间的流逝水合物的生长对于准备大规模的CH4提取和CO2隔离是必不可少的。在这项研究中,我们在200 mL高压Jerguson细胞中模拟了海底的压力温度条件,进行了大规模实验。在不同条件下总共进行了13次运行。其中包括形成CH4水合物,然后注入CO2气体和形成CO2水合物,然后注入CH4气体。结果表明,一旦形成天然气水合物,无论注入的是哪种两种气体,它们都会在随后的电荷中显示出“记忆效应”。在两种情况下,注入次要气体后,水合物形成的诱导时间数据都从CH4的96小时和CO2的24小时减少为立即形成水合物,这证明了这一点。在研究CH4-CO2交换的过程中,首先形成了CH4水合物,然后将CO2气体注入系统中,电池的气相色谱(GC)分析表明是纯CH4气相,即所有注入的CO2气体均进入水合物相,仍然被困在水合物笼中数小时,尽管随着时间的流逝,有些二氧化碳确实进入了气相。可替代地,在CH 4 -CO 2交换研究中,其中首先形成CO 2水合物,注入的CH 4最初进入水合物相,但是气态CO 2迅速与CH 4交换为水合物以形成更稳定的CO 2水合物。这些结果与更好的CO2水合物热力学稳定性相一致,这似乎是一种在天然CH4水合物基质中隔离CO2的有前途的方法。上述宏观研究得到了微观研究的补充,以可视化水合物的生长。这项首创的原位研究利用X射线计算机断层摄影(CMT)技术可视化了盐溶液中存在或不存在多孔介质的情况下微尺度的CO2,CH4和混合的CH 4-CO2水合物生长现象。数据显示,在所用的实验条件下,纯CH4形成的CH4水合物主要为球形,而纯CO2水合物则是更多的树枝状分支。另外,还形成具有针状生长的不同比例的混合CH4-CO2水合物。在多孔介质中,CO2水合物的生长与已知的增长模型一致,在已知的增长模型中,溶液为沉积物润湿相。当使用玻璃珠和渥太华砂作为基质时,该系统表现出孔隙填充水合物的生长,而渥太华砂中最初存在的液态CO2和可能的CO2水合物则是孔隙填充的,随着时间的推移会转变成颗粒状形态。数据似乎有望开发出一种方法,该方法将通过从天然存在的水合物中提取CH4(而将CO2隔离在同一地层​​中)来代替我们的能源供应。

著录项

  • 作者

    Horvat, Kristine Nicole.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Materials science.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 303 p.
  • 总页数 303
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号