首页> 外文学位 >Unraveling the Microbial Response to Micro-Aerobic Conditions in Biological Nutrient Removal (BNR) Ecosystems
【24h】

Unraveling the Microbial Response to Micro-Aerobic Conditions in Biological Nutrient Removal (BNR) Ecosystems

机译:揭示微生物对生物营养去除(BNR)生态系统中微需氧条件的响应

获取原文
获取原文并翻译 | 示例

摘要

A relevant subject in the environmental engineering field is the development of energy-efficient wastewater treatment processes. In this context, decreasing aeration during biological nutrient removal (BNR) can lead to significant reductions in carbon footprint, energy usage and operational costs of wastewater treatment. The feasibility of BNR processes using lower oxygen concentrations than conventional treatment plants has been previously demonstrated. Nevertheless, a number of major knowledge gaps remain in our understanding of the BNR microbiome metabolic potential under limited-oxygen conditions. My doctoral research project sought to fill part of these gaps by identifying and studying mechanisms of adaptation to micro-aerobiosis in key members of the BNR microbiome. The proposed approach to study this microbial community combines reactor engineering, high-throughput sequencing and molecular and bioinformatics tools. The project started with the set-up of a lab-scale reactor operated under cyclic anaerobic and micro-aerobic conditions, which effectively removed nitrogen (N) and phosphorus (P) from synthetic wastewater. The operation and performance of this bioreactor, as well as an initial assessment of its microbial community are reported in the second chapter of this thesis. Then, I focused my investigation on unraveling the metabolic shape of the microbial functional groups responsible of metabolizing N and P in the reactor's microbiome. The third chapter contains an analysis of the genomic features characterizing the lifestyle of complete ammonia oxidizer (comammox) bacteria, a novel division of microorganisms capable of oxidizing ammonia to nitrate. The fourth chapter then centers on Ca. Accumulibacter phosphatis, a keystone microorganism responsible for P cycling and removal from wastewater. In both cases, I used data generated from whole genome sequencing to assemble genomes of these uncultured bacteria and to link genomic features and regulatory mechanisms to specific phenotypes. In addition, I used RNA sequencing data to investigate the effect of environmental conditions on the expression of biochemical pathways in Accumulibacter and other members of the microbiome. The information generated in these studies improved our understanding of how self-assembled microbial communities derive energy from substrates available in wastewater while saving energy requirements during wastewater treatment.
机译:环境工程领域的一个相关主题是节能废水处理工艺的开发。在这种情况下,减少生物营养物(BNR)期间的曝气可以导致碳足迹,能源使用和废水处理运营成本的大幅减少。先前已经证明了使用比常规处理厂更低的氧气浓度的BNR工艺的可行性。然而,在限制氧条件下,我们对BNR微生物组代谢潜能的认识仍存在许多主要知识空白。我的博士研究项目试图通过识别和研究BNR微生物组关键成员对微生物气生病的适应机制来填补这些空白。研究该微生物群落的拟议方法结合了反应器工程,高通量测序以及分子和生物信息学工具。该项目从建立实验室规模的反应器开始,该反应器在循环厌氧和微需氧条件下运行,可有效去除合成废水中的氮(N)和磷(P)。本文第二章报道了该生物反应器的运行和性能,以及对其微生物群落的初步评估。然后,我将研究重点放在弄清负责在反应器微生物组中代谢N和P的微生物功能基团的代谢形状。第三章包含对完整氨氧化细菌(comammox)细菌生活方式的基因组特征的分析,该细菌是一种能够将氨氧化为硝酸盐的新型微生物。第四章则以Ca为中心。磷酸积累,一种关键的微生物,负责磷循环和从废水中去除。在这两种情况下,我都使用从全基因组测序中获得的数据来组装这些未培养细菌的基因组,并将基因组特征和调控机制与特定表型联系起来。此外,我使用RNA测序数据来研究环境条件对Accumulibacter和微生物组其他成员中生化途径表达的影响。这些研究中产生的信息增进了我们对自组装微生物群落如何从废水中可利用的底物获取能量的理解,同时节省了废水处理过程中的能量需求。

著录项

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Environmental engineering.;Microbiology.;Genetics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号