首页> 外文学位 >Analysis of Gas-Particle Flows through Multi-Scale Simulations
【24h】

Analysis of Gas-Particle Flows through Multi-Scale Simulations

机译:通过多尺度模拟分析气体颗粒流

获取原文
获取原文并翻译 | 示例

摘要

Multi-scale structures are inherent in gas-solid flows, which render the modeling efforts challenging. On one hand, detailed simulations where the fine structures are resolved and particle properties can be directly specified can account for complex flow behaviors, but they are too computationally expensive to apply for larger systems. On the other hand, coarse-grained simulations demand much less computations but they necessitate constitutive models which are often not readily available for given particle properties. The present study focuses on addressing this issue, as it seeks to provide a general framework through which one can obtain the required constitutive models from detailed simulations.;To demonstrate the viability of this general framework in which closures can be proposed for different particle properties, we focus on the van der Waals force of interaction between particles. We start with Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) simulations where the fine structures are resolved and van der Waals force between particles can be directly specified, and obtain closures for stress and drag that are required for coarse-grained simulations. Specifically, we develop a new cohesion model that appropriately accounts for van der Waals force between particles to be used for CFD-DEM simulations. We then validate this cohesion model and the CFD-DEM approach by showing that it can qualitatively capture experimental results where the addition of small particles to gas fluidization reduces bubble sizes. Based on the DEM and CFD-DEM simulation results, we propose stress models that account for the van der Waals force between particles. Finally, we apply machine learning, specifically neural networks, to obtain a drag model that captures the effects from fine structures and inter-particle cohesion. We show that this novel approach using neural networks, which can be readily applied for other closures other than drag here, can take advantage of the large amount of data generated from simulations, and therefore offer superior modeling performance over traditional approaches.
机译:气固两相流固有的多尺度结构使建模工作具有挑战性。一方面,可以解析精细结构并可以直接指定粒子属性的详细模拟可以解决复杂的流动行为,但计算量太大,无法应用于大型系统。另一方面,粗粒度模拟所需的计算量要少得多,但是它们需要本构模型,对于给定的粒子属性,本构模型通常不容易获得。本研究着眼于解决这一问题,因为它试图提供一个通用的框架,通过该框架人们可以从详细的模拟中获得所需的本构模型。为了证明这种通用框架的可行性,在该框架中可以针对不同的粒子特性提出封闭方法,我们关注粒子之间相互作用的范德华力。我们从计算流体力学(CFD)-离散元方法(DEM)模拟开始,在该模拟中,可以解析精细的结构,并且可以直接指定粒子之间的范德华力,并获得粗粒度模拟所需的应力和阻力闭合。具体来说,我们开发了一种新的内聚模型,该模型适当地考虑了用于CFD-DEM模拟的粒子之间的范德华力。然后,我们通过证明该凝聚模型和CFD-DEM方法可以定性地捕获实验结果,其中在气体流化过程中添加小颗粒可以减小气泡大小,从而验证了该模型。基于DEM和CFD-DEM仿真结果,我们提出了应力模型,该模型考虑了粒子之间的范德华力。最后,我们应用机器学习(尤其是神经网络)来获得阻力模型,该阻力模型捕获了精细结构和粒子间内聚力的影响。我们展示了这种使用神经网络的新颖方法,该方法可以轻松应用于此处的其他闭合,而不是拖曳,它可以利用从模拟生成的大量数据,从而提供优于传统方法的建模性能。

著录项

  • 作者

    Gu, Yile.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Chemical engineering.;Applied mathematics.;Computational physics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号