首页> 外文学位 >Development of Frequency Domain Multidimensional Spectroscopy with Applications in Semiconductor Photophysics
【24h】

Development of Frequency Domain Multidimensional Spectroscopy with Applications in Semiconductor Photophysics

机译:频域多维光谱学的发展及其在半导体光物理中的应用

获取原文
获取原文并翻译 | 示例

摘要

Coherent multidimensional spectroscopy (CMDS) encompasses a family of experimental strategies involving the nonlinear interaction between electric fields and a material under investigation. This approach has several unique capabilities: (1) resolving congested states, (2) extracting spectra that would otherwise be selection-rule disallowed, (3) resolving fully coherent dynamics, (4) measuring coupling, and (5) resolving ultrafast dynamics.;CMDS can be collected in the frequency or the time domain, and each approach has advantages and disadvantages. Frequency domain ``Multi-resonant'' CMDS (MR-CMDS) requires pulsed ultrafast light sources with tunable output frequencies. These pulses are directed into a material under investigation. The pulses interact with the material, and due to the specific interference between the multiple fields the material is driven to emit a new pulse: the MR-CMDS signal. This signal may have a different frequency and/or direction than the input pulses, depending on the exact experiment being performed. The MR-CMDS experiment involves tracking the intensity of this output signal as a function of different properties of the excitation pulses. These properties include (1) frequency. (2) relative arrival time and separation (delay), (3) fluence, and (4) polarization, among others. Thus MR-CMDS can be thought of as a multidimensional experimental space, where experiments typically involve explorations in one to four of the properties above.;Because MR-CMDS is a family of related-but-separate experiments, each of them a multidimensional space, there are special challenges that must be addressed when designing a general-purpose MR-CMDS instrument. These issues require development of software, hardware, and theory. Part I: Background introduces relevant literature which informs on this development work. Part II: Development presents five strategies used to improve MR-CMDS: (1) processing software, (2) acquisition software (3), active artifact correction, (4) automated OPA calibration, and (5) finite pulse accountancy. Finally, Part III: Applications presents four examples where these instruments, with these improvements, have been used to address chemical questions in semiconductor systems.
机译:相干多维光谱(CMDS)涵盖了一系列实验策略,涉及电场与被研究材料之间的非线性相互作用。这种方法具有几种独特的功能:(1)解决拥塞状态;(2)提取否则将不符合选择规则的光谱;(3)解决完全相干的动力学;(4)测量耦合;(5)解决超快动力学。 ; CMDS可以在频域或时域中收集,每种方法各有利弊。频域``多谐振''CMDS(MR-CMDS)需要具有可调输出频率的脉冲超快光源。这些脉冲被引导到正在研究的材料中。脉冲与材料相互作用,并且由于多个场之间的特定干扰,材料被驱动发射新的脉冲:MR-CMDS信号。该信号可能具有与输入脉冲不同的频率和/或方向,具体取决于正在执行的确切实验。 MR-CMDS实验涉及根据激励脉冲的不同特性跟踪此输出信号的强度。这些属性包括(1)频率。 (2)相对到达时间和间隔(延迟),(3)通量和(4)极化等。因此,可以将MR-CMDS视为多维实验空间,其中的实验通常涉及对上述一到四个特性的探索。因为MR-CMDS是一系列相关但独立的实验,每个实验都是多维空间在设计通用MR-CMDS仪器时,必须解决一些特殊挑战。这些问题需要开发软件,硬件和理论。第一部分:背景介绍了相关文献,这些文献为这项开发工作提供了信息。第二部分:开发提出了用于改善MR-CMDS的五种策略:(1)处理软件,(2)采集软件(3),主动伪像校正,(4)自动OPA校准和(5)有限脉冲处理。最后,第三部分:应用程序提供了四个示例,其中这些仪器经过了改进,已用于解决半导体系统中的化学问题。

著录项

  • 作者

    Thompson, Blaise Jonathan.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Analytical chemistry.;Physical chemistry.;Chemistry.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 423 p.
  • 总页数 423
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号