首页> 外文学位 >Software-Defined Architectures for Spectrally Efficient Cognitive Networking in Extreme Environments.
【24h】

Software-Defined Architectures for Spectrally Efficient Cognitive Networking in Extreme Environments.

机译:用于在极端环境中实现频谱高效认知网络的软件定义架构。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this dissertation is the design, development, and experimental evaluation of novel algorithms and reconfigurable radio architectures for spectrally efficient cognitive networking in terrestrial, airborne, and underwater environments. Next-generation wireless communication architectures and networking protocols that maximize spectrum utilization efficiency in congested/contested or low-spectral availability (extreme) communication environments can enable a rich body of applications with unprecedented societal impact. In recent years, underwater wireless networks have attracted significant attention for military and commercial applications including oceanographic data collection, disaster prevention, tactical surveillance, offshore exploration, and pollution monitoring. Unmanned aerial systems that are autonomously networked and fully mobile can assist humans in extreme or difficult-to-reach environments and provide cost-effective wireless connectivity for devices without infrastructure coverage.;Cognitive radio (CR) has emerged as a promising technology to maximize spectral efficiency in dynamically changing communication environments by adaptively reconfiguring radio communication parameters. At the same time, the fast developing technology of software-defined radio (SDR) platforms has enabled hardware realization of cognitive radio algorithms for opportunistic spectrum access. However, existing algorithmic designs and protocols for shared spectrum access do not effectively capture the interdependencies between radio parameters at the physical (PHY), medium-access control (MAC), and network (NET) layers of the network protocol stack. In addition, existing off-the-shelf radio platforms and SDR programmable architectures are far from fulfilling runtime adaptation and reconfiguration across PHY, MAC, and NET layers. Spectrum allocation in cognitive networks with multi-hop communication requirements depends on the location, network traffic load, and interference profile at each network node. As a result, the development and implementation of algorithms and cross-layer reconfigurable radio platforms that can jointly treat space, time, and frequency as a unified resource to be dynamically optimized according to inter- and intra-network interference constraints is of fundamental importance.;In the next chapters, we present novel algorithmic and software/hardware implementation developments toward the deployment of spectrally efficient terrestrial, airborne, and underwater wireless networks. In Chapter 1 we review the state-of-art in commercially available SDR platforms, describe their software and hardware capabilities, and classify them based on their ability to enable rapid prototyping and advance experimental research in wireless networks. Chapter 2 discusses system design and implementation details toward real-time evaluation of a software-radio platform for all-spectrum cognitive channelization in the presence of narrowband or wideband primary stations. All-spectrum channelization is achieved by designing maximum signal-to-interference-plus-noise ratio (SINR) waveforms that span the whole continuum of the device-accessible spectrum, while satisfying peak power and interference temperature (IT) constraints for the secondary and primary users, respectively. In Chapter 3, we introduce the concept of all-spectrum channelization based on max-SINR optimized sparse-binary waveforms, we propose optimal and suboptimal waveform design algorithms, and evaluate their SINR and bit-error-rate (BER) performance in an SDR testbed. Chapter 4 considers the problem of channel estimation with minimal pilot signaling in multi-cell multi-user multi-input multi-output (MIMO) systems with very large antenna arrays at the base station, and proposes a least-squares (LS)-type algorithm that iteratively extracts channel and data estimates from a short record of data measurements. Our algorithmic developments toward spectrally-efficient cognitive networking through joint optimization of channel access code-waveforms and routes in a multi-hop network are described in Chapter 5. Algorithmic designs are software optimized on heterogeneous multi-core general-purpose processor (GPP)-based SDR architectures by leveraging a novel software-radio framework that offers self-optimization and real-time adaptation capabilities at the PHY, MAC, and NET layers of the network protocol stack. Our system design approach is experimentally validated under realistic conditions in a large-scale hybrid ground-air testbed deployment. Chapter 6 reviews the state-of-art in software and hardware platforms for underwater wireless networking and proposes a software-defined acoustic modem prototype that enables (i) cognitive reconfiguration of PHY/MAC parameters, and (ii) cross-technology communication adaptation. The proposed modem design is evaluated in terms of effective communication data rate in both water tank and lake testbed setups. In Chapter 7, we present a novel receiver configuration for code-waveform-based multiple-access underwater communications. The proposed receiver is fully reconfigurable and executes (i) all-spectrum cognitive channelization, and (ii) combined synchronization, channel estimation, and demodulation. Experimental evaluation in terms of SINR and BER show that all-spectrum channelization is a powerful proposition for underwater communications. At the same time, the proposed receiver design can significantly enhance bandwidth utilization. Finally, in Chapter 8, we focus on challenging practical issues that arise in underwater acoustic sensor network setups where co-located multi-antenna sensor deployment is not feasible due to power, computation, and hardware limitations, and design, implement, and evaluate an underwater receiver structure that accounts for multiple carrier frequency and timing offsets in virtual (distributed) MIMO underwater systems.
机译:本文的目的是设计,开发和实验评估用于陆地,机载和水下环境的频谱有效认知网络的新颖算法和可重构无线电体系结构。下一代无线通信体系结构和网络协议可以在拥塞/竞争或低频谱可用性(极端)通信环境中最大化频谱利用率,从而可以实现具有空前社会影响的丰富应用程序。近年来,水下无线网络已在军事和商业应用中引起了广泛关注,包括海洋数据收集,灾难预防,战术监视,海上勘探和污染监测。可以自主联网并完全移动的无人机系统可以在极端或难以到达的环境中为人类提供帮助,并为不具备基础设施覆盖范围的设备提供具有成本效益的无线连接。;认知无线电(CR)已经成为一种有前途的技术,可以最大化频谱通过自适应地重新配置无线电通信参数,在动态变化的通信环境中提高效率。同时,快速发展的软件定义无线电(SDR)平台技术使用于机会频谱访问的认知无线电算法的硬件实现成为可能。但是,用于共享频谱访问的现有算法设计和协议不能有效地捕获网络协议栈的物理(PHY),介质访问控制(MAC)和网络(NET)层的无线电参数之间的相互依赖性。此外,现有的现成无线电平台和SDR可编程体系结构还无法在PHY,MAC和NET层上实现运行时自适应和重新配置。具有多跳通信要求的认知网络中的频谱分配取决于每个网络节点的位置,网络流量负载和干扰状况。结果,能够将空间,时间和频率共同视为根据网络间和网络内干扰约束而动态优化的统一资源的算法和跨层可重配置无线电平台的开发和实现,具有至关重要的意义。 ;在下一章中,我们将介绍针对频谱高效的地面,机载和水下无线网络的部署的新颖算法和软件/硬件实现开发。在第1章中,我们回顾了商用SDR平台的最新技术,描述了它们的软件和硬件功能,并根据它们在无线网络中实现快速原型开发和推进实验研究的能力对其进行了分类。第2章讨论了在窄带或宽带主站的情况下针对全光谱认知信道化的软件无线电平台的实时评估的系统设计和实现细节。通过设计跨设备可访问频谱的整个连续范围的最大信号干扰加噪声比(SINR)波形,同时满足次级和基站的峰值功率和干扰温度(IT)约束,可以实现全频谱信道化。主要用户。在第3章中,我们介绍了基于max-SINR优化的稀疏二进制波形的全频谱信道化的概念,提出了最佳和次优的波形设计算法,并评估了SDR中的SINR和误码率(BER)性能测试台。第4章考虑了基站中天线阵列非常大的多小区多用户多输入多输出(MIMO)系统中具有最小导频信令的信道估计问题,并提出了最小二乘(LS)型该算法可从简短的数据测量记录中反复提取信道和数据估计。第5章介绍了我们通过多跳网络中的通道访问代码波形和路由的联合优化而向频谱有效的认知网络发展的算法。算法设计是在异构多核通用处理器(GPP)上进行软件优化的,通过利用一种新颖的软件无线电框架来实现基于SDR的架构,该框架在网络协议栈的PHY,MAC和NET层提供了自我优化和实时自适应功能。我们的系统设计方法已在大规模混合地面空气测试台部署的实际条件下进行了实验验证。第6章回顾了用于水下无线网络的软件和硬件平台的最新技术,并提出了一种软件定义的声学调制解调器原型,该原型可以实现(i)PHY / MAC参数的认知重配置,以及(ii)跨技术交流适应。拟议的调制解调器设计是根据水箱和湖泊试验台设置中的有效通信数据速率进行评估的。在第7章中,我们提出了一种新颖的接收机配置,用于基于代码波形的多路访问水下通信。所提出的接收机是完全可重构的,并且执行(i)全频谱认知信道化,以及(ii)组合的同步,信道估计和解调。根据SINR和BER进行的实验评估表明,全频谱信道化是进行水下通信的有力建议。同时,提出的接收机设计可以显着提高带宽利用率。最后,在第8章中,我们重点讨论了在水下声传感器网络设置中出现的具有挑战性的实际问题,在这些场景中,由于功率,计算和硬件限制,无法在同一地点部署多天线传感器,并且设计,实现和评估水下接收机结构,可解决虚拟(分布式)MIMO水下系统中的多个载波频率和定时偏移问题。

著录项

  • 作者

    Sklivanitis, Georgios.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Electrical engineering.;Computer science.;Acoustics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号