首页> 外文学位 >Anatomical substrates of central nervous system plasticity induced by spinal cord reflex conditioning and sensorimotor cortex stimulation.
【24h】

Anatomical substrates of central nervous system plasticity induced by spinal cord reflex conditioning and sensorimotor cortex stimulation.

机译:脊髓反射调节和感觉运动皮层刺激诱导的中枢神经系统可塑性的解剖基质。

获取原文
获取原文并翻译 | 示例

摘要

During development and throughout adult life, inputs from the brain combine with inputs from the periphery to induce activity-dependent plasticity in the spinal cord. This activity-dependent plasticity shapes spinal circuitry and helps in acquisition and maintenance of normal motor function. The neural pathways and processes responsible for induction and maintenance of plasticity in the spinal cord remain unclear. Understanding the mechanisms responsible for activity-dependent plasticity in the spinal cord is essential for developing therapies for spinal cord injury.;Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex (SSR), provides a simple experimental model to study activity-dependent plasticity in the spinal cord. In response to an operant conditioning protocol, monkeys, humans, rats, and mice can gradually increase or decrease the SSR or the H-reflex. Operant-conditioning induces plasticity at multiple sites in the CNS including the spinal cord. Furthermore, conditioning appears to be dependent only on descending influence originating from the contralateral sensorimotor cortex via the corticospinal tract (CST). In addition, a recent study indicated that, like operant conditioning, direct electrical stimulation of the SMC also modulates H-reflex by inducing plasticity in the cortex and the spinal cord. The anatomical basis of spinal cord plasticity responsible for operant conditioning and SMC stimulation-induced modulation in the H-reflex remains to be elucidated.;The central goal of this study was to determine if the change in the soleus H-reflex subsequent to operant conditioning and SMC stimulation is associated with changes in the GABAergic terminals on soleus motoneurons. In accord with the central goal, the main hypotheses were that: (1) operant down-conditioning of the H-reflex is associated with an increase in the GABAergic terminals on soleus motoneurons; (2) operant up-conditioning of the H-reflex is associated with a decrease in the GABAergic terminals on soleus motoneurons; and (3) long-term SMC stimulation-induced increase in the H-reflex is associated with a decrease in the GABAergic terminals on soleus motoneurons. These hypotheses were tested by identifying GABAergic terminals based on their immunoreactivity to glutamic acid decarboxylase 67 (GAD67), the main isoform of the enzyme present in terminals on motoneurons.;With regard to the first hypothesis, results from operant conditioning studies indicate that successful down-conditioning was associated with an increase in the number, size, and GAD density of GABAergic terminals on motoneurons. These changes probably reflect the CST influence responsible for the decrease in the H-reflex. With regard to the second hypothesis, successful up-conditioning did not change the GABAergic terminal number, although there was an increase in the terminal diameter. Successful up-conditioning did not differ from unsuccessful up-conditioning in any of the measures. Therefore, the terminal changes could reflect non-specific effects of up-conditioning. Together, the results from these two studies support evidence from previous studies indicating that up- and down-conditioning are not mirror images of each other but rather have different mechanisms. With regard to the third hypothesis, results indicate that long-term SMC stimulation-induced increase in the H-reflex is associated with an increase in the GABAergic terminals on the soleus motoneurons. In addition, there was also a decrease in the GABA-B receptor expression on motoneurons. These changes probably reflect compensatory plasticity in response to the primary plasticity responsible for the SMC stimulation-induced increase in the H-reflex.;Overall, these results provide valuable insights about the anatomical substrates of plasticity responsible for operant conditioning and SMC stimulation-induced change in the H-reflex. Operant conditioning and SMC stimulation-induced modulation in the H-reflex helps in improvement of locomotor function after certain types of spinal cord injury and these results indicate that activity-dependent plasticity in the spinal GABAergic neural networks plays an important role in mediating this functional recovery.
机译:在发育过程中以及整个成年生活中,大脑的输入与周围的输入相结合,从而在脊髓中诱导出与活动有关的可塑性。这种与活动有关的可塑性可塑造脊柱电路,并有助于获取和维持正常的运动功能。尚不清楚负责诱导和维持脊髓可塑性的神经途径和过程。了解负责脊髓活动依赖性可塑性的机制对于开发治疗脊髓损伤的方法至关重要。; H反射的操作条件,即脊髓舒张反射(SSR)的电类似物,提供了一个简单的实验模型,研究脊髓中与活动有关的可塑性。响应于操作性调节方案,猴子,人类,大鼠和小鼠可以逐渐增加或减少SSR或H反射。操作者调节可在CNS的多个部位(包括脊髓)诱导可塑性。此外,调节似乎仅取决于源自对侧感觉运动皮层经由皮质脊髓束(CST)的下降影响。此外,最近的一项研究表明,像手术调节一样,SMC的直接电刺激也通过诱导皮质和脊髓的可塑性来调节H反射。负责操作性调节和SMC刺激引起的H反射调节的脊髓可塑性的解剖学基础尚待阐明。;本研究的主要目标是确定操作性调节后比目鱼H反射是否发生变化而SMC刺激与比目鱼运动神经元的GABA能终末改变有关。根据主要目标,主要假设是:(1)H反射的操作性下调与比目鱼运动神经元上GABA能末端增加有关。 (2)H反射的操作性上调与比目鱼运动神经元的GABA能末梢减少有关。 (3)长期SMC刺激引起的H反射增加与比目鱼运动神经元上的GABA能末端减少有关。这些假说是通过根据GABA能位末端对谷氨酸脱羧酶67(GAD67)的免疫反应性进行验证的,这些氨基酸是运动神经元末端的酶的主要同工型;关于第一个假说,操作性条件研究的结果表明成功降低了调节与运动神经元上GABA能末端的数量,大小和GAD密度增加有关。这些变化可能反映了引起H反射降低的CST影响。关于第二个假设,尽管末端直径增加,但成功的调理并未改变GABAergic末端数目。在任何一项措施中,成功进行升级与未成功进行升级没有什么不同。因此,终端的变化可能反映了上调的非特定影响。总之,这两项研究的结果支持了先前研究的证据,表明上调和下调不是互为镜像,而是具有不同的机制。关于第三个假设,结果表明长期SMC刺激引起的H反射增加与比目鱼运动神经元上GABA能末端的增加有关。另外,运动神经元上的GABA-B受体表达也降低。这些变化可能反映了对可塑性的响应,该可塑性是由SMC刺激引起的H反射增加引起的主要可塑性引起的。总的来说,这些结果提供了可塑性的解剖学基质,可用于操作性调节和SMC刺激引起的变化。在H反射中H反射中的操作性调节和SMC刺激诱导的调制有助于改善某些类型的脊髓损伤后的运动功能,这些结果表明,脊髓GABA能神经网络中的活动依赖性可塑性在介导此功能恢复中起重要作用。

著录项

  • 作者

    Pillai, Shreejith D.;

  • 作者单位

    State University of New York at Albany.;

  • 授予单位 State University of New York at Albany.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号