首页> 外文学位 >Dynamic Modeling, Predictive Control and Optimization of a Rapid Pressure Swing Adsorption System
【24h】

Dynamic Modeling, Predictive Control and Optimization of a Rapid Pressure Swing Adsorption System

机译:快速变压吸附系统的动力学建模,预测控制和优化

获取原文
获取原文并翻译 | 示例

摘要

Rapid Pressure Swing Adsorption (RPSA) is a gas separation technology with an important commercial application for Medical Oxygen Concentrators (MOCs). MOCs use RPSA technology to produce high purity oxygen (O2) from ambient air, and provide medical oxygen therapy to Chronic Obstructive Pulmonary Disease (COPD) patients. COPD is a lung disease which prevents O2 from entering a patient's blood, and reduces the blood oxygen level. The standard therapy for COPD is to provide the patient with high purity (~90%) O2. MOCs have become more popular than traditional O 2 gas cylinders due to their improved safety, and smaller device size and weight. The MOC market is growing rapidly and was expected to grow from $358 million in 2011 to $1.8 billion in 2017. Recently, a novel, single-bed MOC design was developed and tested to further reduce the size and weight of the device, and provide a continuous supply of O2 to the patient. This single-bed design uses a complex RPSA cyclic process with many nonlinear effects. Flow reversals, discrete valve switching, nonlinear adsorption effects, and complex fluid dynamics all make operating the RPSA system very challenging. Feedback control is necessary in a final commercial product to ensure the device operates reliably, but feedback control of PSA systems is not well studied in the current literature.;In this work, a study of dynamic modeling, predictive control and optimization of this single-bed RPSA device is presented. A detailed, nonlinear plant model of the RPSA device is used to study the dynamics of the system as well as design a Model Predictive Controller (MPC) for the RPSA system. The plant model is a fully coupled, nonlinear set of Partial and Ordinary Differential Equations (PDEs and ODEs) which act as a representation of reality when design and evaluating the MPC. A sub-space model identification technique using Pseudo-Random Binary Sequence (PRBS) input signals generate a linear model which reduces the computational cost of MPC, and allows the algorithm to be implemented as an embedded controller for the RPSA device. The multivariable MPC independently manipulates the RPSA cycle step durations to control both the product composition and pressure. This MPC strategy was designed and tested in simulation before being implemented on a lab-scale device.;The MPC is implemented onto a lab-scale MOC prototype using Raspberry Pi hardware, and evaluated using several MOC-relevant disturbance scenarios. The MPC is also expanded using piece-wise linear modeling to improve the performance of an RPSA device for other concentrated O2 applications. The embedded MPC features a convex quadratic optimization problem which is solved in real time using online output measurements. Additional hardware in the embedded controller operates the RPSA cycle and implements control actions supplied by the MPC.;Design and optimization of RPSA systems remains an active area of research, and many PSA models have been used to optimize RPSA cycles in simulation. In this work, a model-free steady state optimization approach using the embedded hardware is presented which does not require a detailed process model, and uses experimental data and a nonlinear solver to optimize the RPSA operation given various objectives.
机译:快速变压吸附(RPSA)是一种气体分离技术,在医用制氧机(MOC)中具有重要的商业应用。 MOC使用RPSA技术从周围空气中产生高纯度氧气(O2),并为慢性阻塞性肺疾病(COPD)患者提供医疗氧气疗法。 COPD是一种肺部疾病,可防止O2进入患者的血液,并降低血液中的氧气含量。 COPD的标准疗法是为患者提供高纯度(〜90%)的O2。由于MOC具有更高的安全性以及更小的设备尺寸和重量,它们已比传统的O 2气瓶更受欢迎。 MOC市场发展迅速,预计将从2011年的3.58亿美元增长到2017年的18亿美元。最近,开发并测试了新颖的单床MOC设计,以进一步减小设备的尺寸和重量,并提供持续向患者供应氧气。这种单床设计使用具有许多非线性效应的复杂RPSA循环过程。逆流,离散的阀切换,非线性吸附效应和复杂的流体动力学都使RPSA系统的操作非常困难。为了确保设备的可靠运行,最终产品必须有反馈控制,但是PSA系统的反馈控制在当前文献中并未得到很好的研究。在本工作中,将对动态建模,预测控制和优化进行研究。介绍了床RPSA设备。 RPSA设备的详细的非线性工厂模型用于研究系统的动力学,并为RPSA系统设计模型预测控制器(MPC)。工厂模型是一组完全耦合的非线性偏微分方程组和常微分方程组(PDE和ODE),它们在设计和评估MPC时可作为现实的表示。使用伪随机二进制序列(PRBS)输入信号的子空间模型识别技术生成了线性模型,该模型降低了MPC的计算成本,并允许将该算法实现为RPSA设备的嵌入式控制器。多元MPC独立控制RPSA循环步骤的持续时间,以控制产品组成和压力。该MPC策略是在实验室规模的设备上实施之前在仿真中设计和测试的; MPC是使用Raspberry Pi硬件在实验室规模的MOC原型上实现的,并使用几种与MOC相关的干扰场景进行评估。还使用分段线性建模扩展了MPC,以提高RPSA设备在其他浓缩O2应用中的性能。嵌入式MPC具有凸二次方优化问题,可通过在线输出测量实时解决该问题。嵌入式控制器中的其他硬件可操作RPSA周期并执行MPC提供的控制动作。RPSA系统的设计和优化仍然是研究的活跃领域,许多PSA模型已用于在仿真中优化RPSA周期。在这项工作中,提出了一种使用嵌入式硬件的无模型稳态优化方法,该方法不需要详细的过程模型,而是使用实验数据和非线性求解器在给定各种目标的情况下优化RPSA操作。

著录项

  • 作者

    Urich, Matthew D.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Chemical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号