首页> 外文学位 >Nanostructuring Plasmonic Materials to Engineer Optical Responses
【24h】

Nanostructuring Plasmonic Materials to Engineer Optical Responses

机译:纳米结构等离子材料,以改善光学响应。

获取原文
获取原文并翻译 | 示例

摘要

Plasmonic nanostructures are capable of trapping and confining light at the nanoscale, leading to interesting optical phenomena involving enhanced light-matter interactions. These responses arise in two forms: surface plasmon polaritons propagating on the surface of metal films and localized surface plasmons confined to the surface of metal nanoparticles. Plasmonic modes can couple to free space light with a wavelength dependent on the size and shape of the nanostructuring, the metal material properties, and the surrounding dielectric environment. The properties and applications of these optical responses are discussed in Chapter 1, providing an introduction for plasmonics. In the remainder of this thesis I explore methods to tailor the plasmonic responses by controlling the nanostructuring of plasmonic devices.;I explore this topic from the fabrication perspective in Chapter 2. I discuss and demonstrate a complete fabrication process using parallel patterning techniques for sequential feature density doubling of periodic silicon gratings. These silicon substrates were used for template stripping to produce plasmonic films with nanostructuring to support surface plasmon polaritons. The optical responses were characterized to illustrate their ultraviolet plasmonic activity and to examine the importance of developing scalable patterning methods that access shorter periodicities for manipulating surface plasmon polariton wavelengths across the UV spectrum.;Chapter 3 and 4 describe progress toward tailoring optical cavities for enhancing the photoluminescence intensity of single-walled carbon nanotubes and few-layer black phosphorus, respectively. Both of these nanomaterials possess unique optical properties that show promise for applications in optoelectronics and telecommunications technology but suffer from weak fluorescence efficiency. Lattice plasmon modes were tested as optical cavities for enhancing the emission rate of these two nanomaterials. The lattice plasmon modes were engineered by controlling the geometry of nanoparticle arrays through fabrication methods and by selecting optimal materials for the substrates and superstrates.;Chapter 5 investigates low-symmetry nanoparticle arrays as a way to examine the effects of geometry in photonic lasers. I developed a new, scalable fabrication procedure capable of patterning nanoparticle arrays composed of rhombus-shaped nanoparticles arranged in rhombohedral lattices. This low-symmetry platform provided insight regarding how nanoparticle shape can be used to engineer the electromagnetic hot spots of lattice plasmon modes. Examination of lasing behavior revealed that plasmon-exciton energy transfer is polarization dependent, with stronger coupling and faster dynamics observed when the dipolar orientations of plasmonic modes and gain materials are aligned. As a result, two lattice plasmon modes localized to the same nanoscale hot spots were shown to support lasing simultaneously by coupling to different polarizations of excited dye populations.
机译:等离子体等离子纳米结构能够捕获和限制纳米级的光,从而导致有趣的光学现象,包括增强的光-物质相互作用。这些响应以两种形式出现:在金属膜表面上传播的表面等离激元极化子和局限在金属纳米粒子表面的局部表面等离激元。等离子体模式可以耦合到自由空间光,该自由空间光的波长取决于纳米结构的大小和形状,金属材料特性以及周围的介电环境。这些光学响应的​​特性和应用在第1章中进行了讨论,为等离子学提供了介绍。在本论文的其余部分中,我将探索通过控制等离激元器件的纳米结构来定制等离激元响应的方法。;我将从第2章的制造角度探讨这一主题。我将讨论和演示一个完整的制造过程,该过程使用并行构图技术实现顺序特征周期性硅光栅的密度加倍。这些硅基板用于模板剥离,以产生具有纳米结构的等离激元薄膜,以支持表面等离激元极化子。表征光学响应以说明其紫外等离子体活性,并检验开发可扩展的构图方法的重要性,该方法可访问较短的周期来操纵整个UV光谱中的表面等离子体激元波长。;第3章和第4章描述了为改善光学腔而定制光学腔的进展。单壁碳纳米管和几层黑磷的光致发光强度这两种纳米材料都具有独特的光学性能,这些光学性能显示了在光电子和电信技术中的应用前景,但荧光效率却很低。晶格等离激元模式作为光腔进行了测试,以提高这两种纳米材料的发射速率。通过通过制造方法控制纳米粒子阵列的几何形状,并为基板和上覆层选择最佳材料,设计了晶格等离子体激元模式。第五章研究了低对称性的纳米粒子阵列,作为检验光子激光器中几何效应的一种方法。我开发了一种新的,可扩展的制造程序,该程序能够对由菱形面状晶格排列的菱形纳米颗粒组成的纳米颗粒阵列进行构图。这个低对称性平台提供了有关如何使用纳米颗粒形状设计晶格等离激元模态电磁热点的见解。激光行为的研究表明,等离子激元能量转移是极化相关的,当等离激元模式和增益材料的偶极取向对齐时,观察到更强的耦合和更快的动力学。结果,显示了位于相同纳米级热点上的两个晶格等离激元模式通过耦合到激发的染料群体的不同极化而同时支持激光发射。

著录项

  • 作者

    Knudson, Michael P.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Materials science.;Optics.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号