首页> 外文学位 >Florida Agricultural and Mechanical University College of Science and Technology
【24h】

Florida Agricultural and Mechanical University College of Science and Technology

机译:佛罗里达农业机械大学科技学院

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents the study of the effects of magnetic fields on non-distributed nuclear burning fronts as a possible solution to a fundamental problem for the thermonuclear explosion of a Chandrasekhar mass ( MCh ) white dwarf (WD), the currently favored scenario for the majority of Type Ia SNe (SNe Ia). All existing 3D hydrodynamical simulations predict strong global mixing of the burning products due to Rayleigh-Taylor (RT) instabilities, which is in contradiction with observations. A set of computational magneto-hydrodynamic (MHD) models were ran as a first step and to study the flame physics in rectangular flux tubes, resembling a small inner region of a WD. The initial magnetic fields are up to 1012 G of various orientation. Observed is an increasing suppression of RT instabilities starting at about 109 G. The front speed tends to decrease with increasing magnitude up to about 1011 G. For even higher fields new small scale finger-like structures develop, which increase the burning speed by a factor of 3 to 5 above the field-free RT-dominated regime. Discussed are important aspects of the small-scale dynamo and field amplification during the final stages of the progenitor evolution possibly leading to magnetic fields as high as used in our models. We point out what improvements of the current models are needed to overcome some of the systemic limitations and a road map for the future of this research is outlined. Finally we are excited by the possibility that in a different setup the new instability may provide sufficient burning acceleration so that the local front speed goes over the Chapman-Jougey limit and triggers a detonation. Should this be proven possible, it will become a transition-to-detonation mechanism alternative to the Zel'dovich mechanism, which has not been shown to work in hydrodynamical simulations so far.
机译:这篇论文提出了磁场对非分布式核燃烧前沿的影响的研究,作为解决钱德拉塞卡尔质量(MCh)白矮星(WD)热核爆炸这一基本问题的一种可能的解决方案,这是目前大多数人所青睐的方案。类型Ia SNe(SNe Ia)。所有现有的3D流体动力学模拟都预测由于瑞利-泰勒(RT)的不稳定性,燃烧产物将发生强烈的全球混合,这与观测结果相矛盾。第一步,运行了一组计算磁流体动力学(MHD)模型,以研究类似于WD较小内部区域的矩形通量管中的火焰物理学。各种方向的初始磁场高达1012G。观察到,从约109 G开始,对RT不稳定性的抑制作用逐渐增强。前沿速度随着幅度的增加而降低,直至约1011G。对于更高的磁场,还会出现新的小规模的手指状结构,从而将燃烧速度提高了一个因素。比无场RT主导方案高3到5。讨论了祖先进化的最后阶段小规模发电机和场放大的重要方面,可能会导致产生与我们模型中使用的磁场一样高的磁场。我们指出了当前模型需要进行哪些改进以克服某些系统性局限性,并概述了该研究的未来路线图。最终,我们为新的不稳定性可能提供足够的燃烧加速度而感到兴奋,这是因为新的不稳定性可能会提供足够的燃烧加速度,从而使本地前沿速度超过Chapman-Jougey极限并引发爆炸。如果这被证明是可能的,它将成为Zel'dovich机理的一种由爆轰过渡到爆轰的机理,到目前为止,在流体力学模拟中尚无此方法。

著录项

  • 作者

    Hristov, Boyan Alexandrov.;

  • 作者单位

    Florida Agricultural and Mechanical University.;

  • 授予单位 Florida Agricultural and Mechanical University.;
  • 学科 Astrophysics.;Fluid mechanics.;Plasma physics.
  • 学位 Ph.D.Physics.
  • 年度 2018
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号