首页> 外文学位 >Finger-Powered Thermoplastic Microfluidic Electrochemical Assay for Diagnostic Testing Using a Mobile Phone
【24h】

Finger-Powered Thermoplastic Microfluidic Electrochemical Assay for Diagnostic Testing Using a Mobile Phone

机译:手指供电的热塑性微流体电化学分析,用于使用手机进行诊断测试

获取原文
获取原文并翻译 | 示例

摘要

Point-of-care (POC) testing has gained considerable attention in recent years due to its ability to provide diagnostic information without the need for centralized laboratory facilities or bulky equipment. This has been achieved, in part, by advances in micro-electro-mechanical system (MEMS) and analytical chemistry, which has resulted in the miniaturization and integration of sensitive biosensors and fluidic components. Recently, researchers have demonstrated the use of mobile phones for POC testing, which offers the advantages of portability and wireless data transmission. Many mobile phone-based POC tests are based on optical imaging or colorimetric assays, which are useful for some diagnostic applications, but lack the accuracy and sensitivity required for the diagnosis of many important diseases. Moreover, these devices employ microfluidic chips fabricated using glass, polydimethylsiloxane (PDMS) or paper, which require complex microfabrication or surface treatments, or offer limited fluidic control.;In this dissertation, we explored the development of plastic-based microfluidic chips for rapid electrochemical measurements of protein biomarkers using a mobile phone biosensing platform. We first investigated UV/ozone (UVO) surface treatment on plastics to better understand its usefulness for microfluidic POC applications. We found that UVO-treated poly(methyl methacrylate) (PMMA), cyclic olefin copolymer (COC) and polycarbonate (PC) experience hydrophobic recovery within 4 weeks and the rate at which it occurs is dependent on the UVO treatment duration. Furthermore, we discovered that the hydrophobic recovery of UVO-treated COC and PC can be inhibited by storing them in dehumidified or vacuum conditions. UVO-treated plastics were also used for protein adsorption measurements, which showed that UVO treatment minimized protein adsorption and this effect is correlated with the treatment duration. Lastly, we demonstrated capillary-driven flows in UVO-treated PMMA microchannels, which revealed that the flow rate can be tuned by adjusting the treatment duration.;We also explored the development of new fabrication methods for generating plastic microfluidic devices. In particular, we have demonstrated for the first time the use of 3D printed metal molds for fabricating plastic microchannels via hot embossing. Through the optimization of the powder composition and processing parameters, we generated stainless steel molds with superior material properties (density and surface finish) and replication accuracy compared with previously reported 3D printed metal parts. 3D printed molds were used to fabricate PMMA replicas, which exhibited good feature integrity and replication quality. Microchannels fabricated using these replicas exhibited leak-free operation and comparable flow performance as microchannels fabricated from CNC milled molds for both capillary and pressure-driven flows.;Toward the realization of a shelf stable, electricity-free microfluidic assay for POC testing, we developed a finger-powered microfluidic chip for electrochemical measurements of protein biomarkers. This device employs a valveless, piston-based pumping mechanism which utilizes a human finger for the actuation force. Liquids are driven inside microchannels by pressing on a mechanical piston, which generates a pressure-driven flow. Dried reagents are preloaded in microwells allowing for the entire testing process to be completed on-chip. Additionally, a nonenzymatic detection scheme is employed which circumvents the need for refrigeration. For proof-of-concept, this microfluidic assay was coupled with a mobile phone biosensing platform for quantitative measurements of Plasmodium falciparum histidine-rich protein-2 (PfHRP2) in human blood samples. Using this platform, PfHRP2 was detected from 1 to 20 microg/mL with high specificity and each measurement could be completed in ≤ 5 min. In addition, this assay can be stored at room temperature for up to one month with a negligible loss in performance. The results and knowledge presented in this dissertation will provide new insights into the development of plastic microfluidic devices for POC testing as well as other biomedical application.
机译:即时检验(POC)测试近年来获得了相当大的关注,因为它能够提供诊断信息而无需集中的实验室设施或庞大的设备。这部分是通过微机电系统(MEMS)和分析化学的进步实现的,这导致了灵敏生物传感器和流体组件的小型化和集成。最近,研究人员已经证明了将手机用于POC测试,这提供了便携性和无线数据传输的优势。许多基于移动电话的POC测试都是基于光学成像或比色法,这些方法可用于某些诊断应用,但缺乏诊断许多重要疾病所需的准确性和敏感性。此外,这些设备使用由玻璃,聚二甲基硅氧烷(PDMS)或纸制成的微流体芯片,这些芯片需要复杂的微加工或表面处理,或提供有限的流体控制。使用手机生物传感平台进行蛋白质生物标志物的检测。我们首先研究了塑料上的UV /臭氧(UVO)表面处理,以更好地了解其对微流体POC应用的有用性。我们发现,UVO处理的聚甲基丙烯酸甲酯(PMMA),环烯烃共聚物(COC)和聚碳酸酯(PC)在4周内经历了疏水性恢复,其发生速率取决于UVO处理的持续时间。此外,我们发现,将UVO处理过的COC和PC储存在除湿或真空条件下,可以抑制疏水恢复。 UVO处理过的塑料还用于蛋白质吸附测量,这表明UVO处理可最大程度地减少蛋白质吸附,并且这种效果与处理时间有关。最后,我们展示了在UVO处理的PMMA微通道中的毛细管驱动流,这表明可以通过调整处理时间来调节流速。我们还探索了用于生产塑料微流器件的新制造方法的开发。特别是,我们首次展示了使用3D打印金属模具通过热压花制造塑料微通道的方法。通过优化粉末成分和加工参数,与以前报道的3D打印金属零件相比,我们生产的不锈钢模具具有优异的材料性能(密度和表面光洁度)和复制精度。 3D打印模具用于制造PMMA复制品,该复制品具有良好的特征完整性和复制质量。使用这些复制品制造的微通道表现出无泄漏的操作性能,并且具有与使用CNC铣削模具制造的微通道(用于毛细管和压力驱动的流)可媲美的流动性能。为了实现用于POC测试的货架稳定,无电的微流体分析,我们开发了手指供电的微流控芯片,用于蛋白质生物标志物的电化学测量。该设备采用无阀,基于活塞的泵送机构,该机构利用人的手指来产生驱动力。通过压在机械活塞上来驱动微通道内部的液体,从而产生压力驱动的流动。将干燥的试剂预装在微孔中,从而允许整个测试过程在芯片上完成。另外,采用了一种非酶检测方案,从而避免了对制冷的需求。为了进行概念验证,该微流分析与移动电话生物传感平台相结合,用于定量测量人血液样本中的恶性疟原虫组氨酸富集蛋白2(PfHRP2)。使用该平台,可以高特异性检测出1至20 microg / mL的PfHRP2,并且每次测量都可以在≤5分钟内完成。此外,该测定法可在室温下保存长达一个月,而性能损失可忽略不计。本文的结果和知识将为POC检测以及其他生物医学应用的塑料微流控设备的开发提供新的见解。

著录项

  • 作者

    Lin, Tung-Yi.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Mechanical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号