首页> 外文学位 >Olefin Metathesis by Supported Metal Oxide Catalysts.
【24h】

Olefin Metathesis by Supported Metal Oxide Catalysts.

机译:负载型金属氧化物催化剂的烯烃复分解。

获取原文
获取原文并翻译 | 示例

摘要

Olefin metathesis is considered to be a green route to production of olefins due to its high selectivity towards desired products. Due to their ease of preparation and catalyst lifetimes, heterogeneous supported metal oxide catalysts such as ReOx, MoOx and WOx are used at large scale industrial applications. Despite decades of catalysis research, the exact nature of catalytic active sites, reaction intermediates and kinetics are not well understood because of lack of modern characterization techniques in the past and absence of detailed knowledge at the molecular level. Extensive in situ and operando spectroscopy (Raman, UV vis, XAS and IR) experiments, theoretical DFT calculations, steady-state kinetics and temperature programmed surface reaction (TPSR) studies were undertaken for the first time to obtain unprecedented insights about the catalytic active sites (their anchoring sites, coordination and oxidation states), reaction intermediates, olefin adsorption/desorption/reaction and kinetics to unravel the fundamental molecular structure-reactivity relationships.;The supported ReOx/Al2O3 system is the most reactive among the heterogeneous supported metal oxide catalysts. The long standing debates surround the nature of ReOx species, number of reactive intermediates and kinetics of this catalytic system. In situ 18O- 16O Raman experiments along with in situ XAS and theoretical DFT calculations of the initial catalyst show that rhenia exists on the Al2O3 support as two distinct isolated surface ReO4 species with dioxo coordination. The two structures are related to their anchoring at different surface hydroxyl sites on the alumina support. The surface ReO4-I species on basic alumina sites were found to be stable and difficult to activate with propylene while the surface ReO 4-II species on acidic alumina sites were found to be easily activated with propylene. This information allowed for the first time the use of acidic promoters to block formation of the inactive surface ReO 4-I species and design catalysts with only active surface ReO4 -II species.;During activation with propylene, in situ UV-vis and XAS spectroscopy revealed that the surface ReO4-II species become partially reduced, mostly to Re+5 species, by forming the oxygenated CH3CHO and HCHO products (pseudo-Wittig mechanism). Subsequent reaction of the partially reduced Re+5 species with propylene oxidizes rhenia back to reactive Re+7-carbenes (Re=CH 2, Re=CHCH3, etc.). The surface Re+7-carbenes are reactive at room temperature and in equilibrium with the gas phase olefins. Consequently, removal of the gas phase olefins significantly diminishes the concentration of reactive surface Re+7-carbenes by about an order of magnitude. This accounts for the low number of reactive intermediates reported in earlier studies that evacuated the catalysts prior to titrating the reactive intermediates.;Two types of surface intermediates were found to be present: weakly adsorbed that reacts at room temperature and strongly adsorbed pi-complexes that reacts at high temperatures (>100°C). The weakly adsorbed Re-carbenes are dynamic and in equilibrium with the gas phase. The strongly adsorbed pi-complexes are not dependent on the gas phase composition and only react with olefins at elevated temperatures. TPSR studies showed that the weakly bound Re-carbenes follows a unimolecular reaction mechanism while the strongly bound pi-complexes follow a bimolecular reaction mechanism. The olefin metathesis steady-state kinetics is affected by these intermediates: first-order in propylene partial pressure at low temperatures (140°C). C3H6/C 3D6 TPSR studies also demonstrated that the rate-determining-step does not involve C-H bond breaking and all olefins share the same rate desorption rate.;These new unprecedented insights are able to resolve the confusing claims that existed for decades in literature.
机译:烯烃复分解因其对所需产物的高选择性而被认为是生产烯烃的绿色途径。由于其易于制备和催化剂寿命,在大规模工业应用中使用了非均相负载金属氧化物催化剂,例如ReOx,MoOx和WOx。尽管进行了数十年的催化研究,但由于过去缺乏现代的表征技术以及在分子水平上缺乏详细的知识,人们对催化活性位,反应中间体和动力学的确切性质尚不十分了解。首次进行了广泛的原位和操作光谱(拉曼,紫外可见,XAS和IR)实验,理论DFT计算,稳态动力学和程序升温表面反应(TPSR)研究,以期获得有关催化活性位点的空前洞察力(其锚固位点,配位和氧化态),反应中间体,烯烃吸附/解吸/反应和动力学,以揭示基本的分子结构-反应性关系。;负载型ReOx / Al2O3系统在多相负载型金属氧化物催化剂中反应性最高。长期以来一直围绕着ReOx种类的性质,反应性中间体的数量以及该催化系统的动力学展开辩论。原位18O-16O拉曼实验以及原位XAS和初始催化剂的理论DFT计算表明,en存在于Al2O3载体上,是两种不同的分离的表面二氧化三稀土ReO4。这两个结构与其在氧化铝载体上不同的表面羟基位置的锚定有关。发现碱性氧化铝位点上的表面ReO4-I种类稳定且难以用丙烯活化,而发现酸性氧化铝位点上的表面ReO 4-II种类容易用丙烯活化。该信息首次允许使用酸性促进剂来阻止惰性表面ReO 4-I物种的形成,并设计仅具有活性表面ReO4-II物种的催化剂。;在丙烯活化过程中,原位紫外可见光谱和XAS光谱学揭示了通过形成含氧的CH3CHO和HCHO产物,表面ReO4-II物种被部分还原,大部分还原为Re + 5物种(伪维特希机理)。随后部分还原的Re + 5物种与丙烯的反应将rh氧化成活性Re + 7-卡宾(Re = CH 2,Re = CHCH3等)。表面Re + 7-卡宾在室温下与气相烯烃处于平衡状态时具有反应性。因此,除去气相烯烃会显着降低反应性表面Re + 7-卡宾的浓度约一个数量级。这解释了在较早的研究中报告的反应中间体数量少,在滴定反应中间体之前先抽空了催化剂。;发现存在两种类型的表面中间体:在室温下反应的弱吸附和强烈的pi络合物吸附在高温(> 100°C)下反应。吸附较弱的Re-卡宾是动态的,并且与气相处于平衡状态。强烈吸附的pi络合物不依赖于气相组成,仅在高温下与烯烃反应。 TPSR研究表明,弱结合的Re-卡宾分子遵循单分子反应机理,而强结合的pi复合物遵循双分子反应机理。这些中间体会影响烯烃复分解的稳态动力学:低温(140°C)下丙烯分压的一级反应。 C3H6 / C 3D6 TPSR研究还表明,确定速率的步骤不涉及C-H键断裂,并且所有烯烃均具有相同的速率解吸速率。这些新的空前见解能够解决数十年来在文献中令人困惑的说法。

著录项

  • 作者

    Lwin, Soe.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Chemical engineering.;Analytical chemistry.;Organic chemistry.;Inorganic chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号