首页> 外文学位 >Neural Control of Hand Grasping Synergies and Their Applications
【24h】

Neural Control of Hand Grasping Synergies and Their Applications

机译:手抓协同的神经控制及其应用

获取原文
获取原文并翻译 | 示例

摘要

In human motor control, feedforward and feedback neural circuits integrate in cortical and subcortical networks of the central nervous system (CNS) to generate movements. For the human hand, this involves controlling over 21 degrees of freedom (DoF). It is hypothesized that rather than directing individual DoFs at each point in time, the CNS may work in a lower dimensional subspace. This subspace is made of a minimal set of synergies, or movement primitives, that describe coordination across multiple DoFs. While it is generally hypothesized that the motor control system works in a lower dimensional synergy subspace, the structure of these synergies and how they may combine is still unknown. This dissertation first explored methods to improve an existing synergy-based motor control model. Linear and nonlinear dimensionality reduction methods were used to derive synergies from grasping tasks. Principal component analysis was found to be an optimal method for extracting meaningful spatiotemporal kinematic patterns, or synergies. Deprivation of sensory feedback (visual and tactile) showed that certain synergies contributed more towards finer movements and later in time. Additionally, modifying synergy duration allowed for better approximations when reconstructing grasps. Electroencephalography (EEG) was then used to record neural signals during grasping. Using a multivariate regression analysis, neural correlates of kinematic synergies were determined. The neural correlates were then used to decode grasp kinematics from EEG, resulting in decoding accuracy above chance level. The use of synergy-based movement models has applications across multiple fields. In motor learning, continuous repetition of a task is considered a gold standard. Training with movement synergies, however, was found to improve task proficiency and translational ability, compared to repetition training and control groups. Such a training paradigm may be valuable to individuals undergoing rehabilitation. While the general synergy patterns derived in these studies were similar across multiple subjects, unique subject-specific properties were still observable. These unique characteristics, at the kinematic synergy level and neural level, showed potential as biometric markers for identity verification systems. The conclusions drawn from this dissertation further the understanding of mechanisms by which synergies may be used in human motor control as well as their potential applications.
机译:在人体运动控制中,前馈和反馈神经回路集成在中枢神经系统(CNS)的皮质和皮质下网络中以产生运动。对于人的手,这涉及控制超过21个自由度(DoF)。假设CNS可能会在较低维度的子空间中工作,而不是在每个时间点都指向单个DoF。此子空间由最小的协同作用或运动原语组成,描述了多个DoF之间的协调。虽然通常假设电动机控制系统在较低维的协同子空间中工作,但是这些协同的结构以及它们如何组合仍然是未知的。本文首先探讨了改进现有基于协同的电机控制模型的方法。线性和非线性降维方法被用来从掌握任务中获得协同作用。发现主成分分析是提取有意义的时空运动学模式或协同效应的最佳方法。缺乏感官反馈(视觉和触觉)表明,某些协同作用有助于更精细的运动和更长时间的运动。另外,在重建抓地力时,修改协同作用持续时间可实现更好的近似。然后使用脑电图(EEG)记录抓握过程中的神经信号。使用多元回归分析,确定了运动学协同作用的神经相关性。然后将神经关联用于从EEG解码抓紧运动学,从而获得高于机会水平的解码精度。基于协同作用的运动模型的使用在多个领域都有应用。在运动学习中,连续重复执行某项任务被视为黄金标准。然而,与重复训练和对照组相比,发现具有运动协同作用的训练可以提高任务熟练度和翻译能力。这样的训练范例对正在康复的个人可能是有价值的。尽管在这些研究中得出的一般协同作用模式在多个受试者之间相似,但仍然可以观察到独特的受试者特异性。这些独特的特征,在运动学协同作用水平和神经作用水平上,显示出作为身份验证系统生物特征标记的潜力。从本论文得出的结论进一步理解了协同作用可用于人体运动控制的机制及其潜在应用。

著录项

  • 作者

    Patel, Vrajeshri.;

  • 作者单位

    Stevens Institute of Technology.;

  • 授予单位 Stevens Institute of Technology.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号