首页> 外文学位 >Development of highly active and stable hybrid cathode catalyst for PEMFCs.
【24h】

Development of highly active and stable hybrid cathode catalyst for PEMFCs.

机译:用于PEMFC的高活性和稳定的杂化阴极催化剂的开发。

获取原文
获取原文并翻译 | 示例

摘要

Polymer electrolyte membrane fuel cells (PEMFCs) are attractive power sources of the future for a variety of applications including portable electronics, stationary power, and automobile application. However, sluggish cathode kinetics, high Pt cost, and durability issues inhibit the commercialization of PEMFCs. To overcome these drawbacks, research has been focused on alloying Pt with transition metals since alloy catalysts show significantly improved catalytic properties like high activity, selectivity, and durability. However, Pt-alloy catalysts synthesized using the conventional impregnation method exhibit uneven particle size and poor particle distribution resulting in poor performance and/or durability in PEMFCs.;In this dissertation, a novel catalyst synthesis methodology is developed and compared with catalysts prepared using impregnation method and commercial catalysts. Two approaches are investigated for the catalyst development. The catalyst durability was studied under U. S. DRIVE Fuel Cell Tech Team suggested protocols. In the first approach, the carbon composite catalyst (CCC) having active sites for oxygen reduction reaction (ORR) is employed as a support for the synthesis of Pt/CCC catalyst. The structural and electrochemical properties of Pt/CCC catalyst are investigated using high-resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, while RDE and fuel cell testing are carried out to study the electrochemical properties. The synergistic effect of CCC and Pt is confirmed by the observed high activity towards ORR for the Pt/CCC catalyst. The second approach is the synthesis of Co-doped hybrid cathode catalysts (Co-doped Pt/CCC) by diffusing the Co metal present within the CCC support into the Pt nanoparticles during heat-treatment. The optimized Co-doped Pt/CCC catalyst performed better than the commercial catalysts and the catalyst prepared using the impregnation method in PEMFCs and showed high stability under 30,000 potential cycles between 0.6 and 1.0 V. To further increase the stability of the catalyst at high potential cycles (1.0-1.5 V), high temperature treatment is used to obtain graphitized carbon having optimum BET surface area. The novel catalyst synthesis procedure developed in this study was successfully applied for the synthesis of Co-doped Pt catalysts supported on the graphitized carbon which showed high activity and enhanced stability at high potentials.
机译:聚合物电解质膜燃料电池(PEMFC)是未来有吸引力的电源,可用于各种应用,包括便携式电子,固定电源和汽车应用。然而,缓慢的阴极动力学,高的Pt成本和耐久性问题阻碍了PEMFC的商业化。为了克服这些缺点,研究一直集中在使Pt与过渡金属合金化上,因为合金催化剂显示出显着改善的催化性能,例如高活性,选择性和耐久性。然而,使用常规浸渍法合成的Pt合金催化剂表现出不均匀的粒径和较差的颗粒分布,从而导致PEMFCs的性能和/或耐久性较差;本论文开发了一种新颖的催化剂合成方法,并将其与浸渍法制备的催化剂进行了比较。方法和商业催化剂。研究了两种用于催化剂开发的方法。在美国驱动燃料电池技术小组建议的方案下研究了催化剂的耐久性。在第一种方法中,具有用于氧还原反应(ORR)的活性位的碳复合催化剂(CCC)被用作合成Pt / CCC催化剂的载体。使用高分辨率透射电子显微镜,X射线衍射和X射线光电子能谱研究了Pt / CCC催化剂的结构和电化学性质,同时进行了RDE和燃料电池测试以研究其电化学性质。通过观察到的Pt / CCC催化剂对ORR的高活性,证实了CCC和Pt的协同作用。第二种方法是通过在热处理过程中将CCC载体内存在的Co金属扩散到Pt纳米颗粒中来合成Co掺杂的混合阴极催化剂(Co掺杂的Pt / CCC)。优化的Co掺杂Pt / CCC催化剂的性能优于市售催化剂和在PEMFC中使用浸渍方法制备的催化剂,并且在30,000个电位循环(介于0.6和1.0 V之间)下显示出高稳定性。进一步提高了高电位催化剂的稳定性循环(1.0-1.5V),使用高温处理以获得具有最佳BET表面积的石墨化碳。在这项研究中开发的新颖的催化剂合成方法已成功地用于合成负载在石墨化碳上的Co掺杂的Pt催化剂,该催化剂在高电势下表现出高活性和增强的稳定性。

著录项

  • 作者

    Jung, Won Suk.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Engineering.;Energy.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号