首页> 外文学位 >Fluid flow and damage in two-phase media: Theory and applications to magma and environmental dynamics.
【24h】

Fluid flow and damage in two-phase media: Theory and applications to magma and environmental dynamics.

机译:两相介质中的流体流动和破坏:岩浆和环境动力学的理论和应用。

获取原文
获取原文并翻译 | 示例

摘要

Two-phase flows exist in many processes in the Earth over disparate time scales. Damage (void generation and micro-cracking) in the flow are relevant for geological processes such as magma-fracturing during melt migration through the upper mantle on the geological time scale, and hydro-fracturing of crustal rocks during subsurface fluid injection on the human time scale. This dissertation is devoted to the theoretical and numerical study of damage, deformation, and fluid flow in porous rocks as a coupled process. Mathematical models are developed for coupled fluid transport in both viscous and poro-elastic rocks, and help us to explain the weakening and fracturing mechanisms within the two-phase flow in deformable porous rocks. Two damage problems are constrained and discussed with the developed model: 1. During magma migration, what is the mechanism of the transition from a magmatic porous flow originated in the viscous asthenosphere to fracture propagation in the elastic lithosphere? 2. During the subsurface fluid injection, how does damage weaken the strength of the rock matrix and affect the diffusion and distribution profiles of porosity and overpressure? In Chapter 2 I employ two-phase physics and interface thermodynamics to describe void/microcrack formation. The transition from porous flow to fracturing is described by a nonequilibrium relation between interfacial surface energy, pressure and viscous deformation. I study the effect of pore-generating damage on the propagation of both steady-state fluid flow and time-dependent porosity waves, and show that damage enhances melt migration by causing focused porosity and faster migration. In Chapter 3 I extend the 1-D model in Chapter 2 into two-dimensional space, and study the formation of finite-amplitude, two-dimensional magmatic solitary waves with and without solenoidal (rotational) flow of the matrix. The change in geometry of stably propagating circular waves indicates a transition from' magmatic porous flow to dike-like magma-fracturing as magma passes through a semibrittle/semi-ductile zone in the lithosphere. In Chapter 3 I develop a two-phase viscoelastic damage model and provide a basic framework to study the pressure and porosity diffusion in fractured near-surface porous rocks. The model shows that while nonlinear permeability models result in an enhanced diffusivity, damage makes the matrix more compressible. The net effect is that the porosity diffusivity is reduced causing fluid infiltration to accumulate closer to the injection source, leading to a slower fluid diffusion during hydro-fracturing with a fixed porosity boundary condition. However if a constant over-pressure boundary condition is applied, a weakened matrix with damage leads to greater pressure diffusivity than for porosity.
机译:在不同的时间尺度上,地球的许多过程中都存在两相流。流动中的破坏(空隙的产生和微裂纹)与地质过程有关,例如在地质时标上的熔岩通过上地幔运移过程中的岩浆破裂,以及在人类时期注入地下流体过程中地壳的水力压裂。规模。本文致力于耦合过程中岩石的损伤,变形和流体流动的理论和数值研究。建立了在粘性和孔隙弹性岩石中耦合流体运移的数学模型,并帮助我们解释了可变形多孔岩石在两相流中的弱化和破裂机理。所开发的模型对两个破坏问题进行了约束和讨论:1.在岩浆运移过程中,从粘稠软流圈中产生的岩浆多孔流向弹性岩石圈中的裂缝扩展过渡的机理是什么? 2.在地下流体注入过程中,破坏如何削弱岩石基质的强度,并影响孔隙度和超压的扩散和分布曲线?在第二章中,我采用两相物理学和界面热力学来描述空隙/微裂纹的形成。从多孔流到压裂的过渡由界面表面能,压力和粘性变形之间的不平衡关系描述。我研究了成孔破坏对稳态流体流动和随时间变化的孔隙波传播的影响,并表明破坏通过引起集中孔隙和更快的迁移而促进了熔体迁移。在第3章中,我将第2章中的1-D模型扩展到二维空间中,并研究了具有和不具有矩阵螺线(旋转)流动的有限振幅,二维岩浆孤立波的形成。稳定传播的圆波的几何形状变化表明,当岩浆穿过岩石圈中的半脆性/半延性区时,从岩浆多孔流向堤防状岩浆破裂过渡。在第三章中,我建立了一个两阶段粘弹性损伤模型,并提供了一个基本框架来研究裂隙近地表多孔岩石中的压力和孔隙度扩散。该模型表明,尽管非线性渗透率模型会导致扩散率增强,但损坏会使矩阵更具可压缩性。最终的结果是,孔隙率的扩散率降低,导致流体渗透更靠近注入源堆积,导致在具有固定孔隙率边界条件的水力压裂过程中,流体扩散变慢。但是,如果施加恒定的超压边界条件,则弱化的具有损伤的基质会导致比孔隙度更大的压力扩散率。

著录项

  • 作者

    Zhengyu, Cai.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Geophysics.;Geophysical engineering.;Hydrologic sciences.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号