首页> 外文学位 >New neural network for real-time human dynamic motion prediction.
【24h】

New neural network for real-time human dynamic motion prediction.

机译:用于实时人类动态运动预测的新神经网络。

获取原文
获取原文并翻译 | 示例

摘要

Artificial neural networks (ANNs) have been used successfully in various practical problems. Though extensive improvements on different types of ANNs have been made to improve their performance, each ANN design still experiences its own limitations. The existing digital human models are mature enough to provide accurate and useful results for different tasks and scenarios under various conditions. There is, however, a critical need for these models to run in real time, especially those with large-scale problems like motion prediction which can be computationally demanding. For even small changes to the task conditions, the motion simulation needs to run for a relatively long time (minutes to tens of minutes). Thus, there can be a limited number of training cases due to the computational time and cost associated with collecting training data. In addition, the motion problem is relatively large with respect to the number of outputs, where there are hundreds of outputs (between 500-700 outputs) to predict for a single problem. Therefore, the aforementioned necessities in motion problems lead to the use of tools like the ANN in this work.;This work introduces new algorithms for the design of the radial-basis network (RBN) for problems with minimal available training data. The new RBN design incorporates new training stages with approaches to facilitate proper setting of necessary network parameters. The use of training algorithms with minimal heuristics allows the new RBN design to produce results with quality that none of the competing methods have achieved. The new RBN design, called Opt_RBN, is tested on experimental and practical problems, and the results outperform those produced from standard regression and ANN models. In general, the Opt_RBN shows stable and robust performance for a given set of training cases.;When the Opt_RBN is applied on the large-scale motion prediction application, the network experiences a CPU memory issue when performing the optimization step in the training process. Therefore, new algorithms are introduced to modify some steps of the new Opt_RBN training process to address the memory issue. The modified steps should only be used for large-scale applications similar to the motion problem. The new RBN design proposes an ANN that is capable of improved learning without needing more training data. Although the new design is driven by its use with motion prediction problems, the consequent ANN design can be used with a broad range of large-scale problems in various engineering and industrial fields that experience delay issues when running computational tools that require a massive number of procedures and a great deal of CPU memory.;The results of evaluating the modified Opt_RBN design on two motion problems are promising, with relatively small errors obtained when predicting approximately 500-700 outputs. In addition, new methods for constraint implementation within the new RBN design are introduced. Moreover, the new RBN design and its associated parameters are used as a tool for simulated task analysis. This work initiates the idea that output weights (W) can be used to determine the most critical basis functions that cause the greatest reduction in the network test error. Then, the critical basis functions can specify the most significant training cases that are responsible for the proper performance achieved by the network. The inputs with the most change in value can be extracted from the basis function centers (U) in order to determine the dominant inputs. The outputs with the most change in value and their corresponding key body degrees-of-freedom for a motion task can also be specified using the training cases that are used to create the network's basis functions.
机译:人工神经网络(ANN)已成功用于各种实际问题。尽管已经对不同类型的人工神经网络进行了广泛的改进以提高其性能,但是每种人工神经网络设计仍存在其自身的局限性。现有的数字人体模型已经足够成熟,可以在各种条件下为不同的任务和场景提供准确而有用的结果。但是,迫切需要这些模型实时运行,尤其是那些具有诸如运动预测之类的大规模问题的模型,这些模型可能需要计算。为了对任务条件进行很小的改变,运动模拟需要运行相对较长的时间(几分钟到几十分钟)。因此,由于与收集训练数据相关的计算时间和成本,训练案例的数量可能有限。另外,相对于输出数量,运动问题相对较大,其中有数百个输出(500-700个输出之间)可预测单个问题。因此,上述运动问题的必要性导致在这项工作中使用诸如ANN之类的工具。该工作介绍了用于以最少可用训练数据解决问题的径向基网络(RBN)设计的新算法。新的RBN设计结合了新的培训阶段和方法,以帮助正确设置必要的网络参数。使用具有最小试探性的训练算法可以使新的RBN设计产生高质量的结果,这是其他竞争方法都无法达到的。名为Opt_RBN的新RBN设计在实验和实际问题上进行了测试,其结果优于标准回归和ANN模型产生的结果。通常,对于给定的一组训练案例,Opt_RBN表现出稳定而强大的性能。当将Opt_RBN应用于大型运动预测应用程序时,网络在训练过程中执行优化步骤时会遇到CPU内存问题。因此,引入了新算法来修改新Opt_RBN训练过程的某些步骤,以解决内存问题。修改后的步骤只能用于类似于运动问题的大规模应用。新的RBN设计提出了一种ANN,能够在不需要更多训练数据的情况下改善学习。尽管新设计是通过使用运动预测问题来推动的,但随之而来的ANN设计仍可用于各种工程和工业领域中的各种大型问题,这些问题在运行需要大量计算的计算工具时会遇到延迟问题。在两个运动问题上评估改进的Opt_RBN设计的结果是有希望的,预测约500-700个输出时获得的误差相对较小。另外,介绍了在新的RBN设计中用于约束实现的新方法。此外,新的RBN设计及其相关参数被用作模拟任务分析的工具。这项工作提出了一个想法,即输出权重(W)可用于确定最关键的基函数,从而最大程度地减少网络测试错误。然后,关键基础功能可以指定负责网络实现适当性能的最重要的培训案例。可以从基函数中心(U)中提取值变化最大的输入,以便确定主要输入。还可使用用于创建网络基本功能的训练案例来指定运动任务中值变化最大的输出及其相应的关键自由度。

著录项

  • 作者

    Bataineh, Mohammad Hindi.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Artificial intelligence.;Biomechanics.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 253 p.
  • 总页数 253
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号