首页> 外文学位 >Forests, Water, and the Atmosphere in Northern California: Insights from Sap-Flow Data Analysis and Numerical Atmospheric Model Simulations.
【24h】

Forests, Water, and the Atmosphere in Northern California: Insights from Sap-Flow Data Analysis and Numerical Atmospheric Model Simulations.

机译:加利福尼亚北部的森林,水和大气:来自树液流量数据分析和数值大气模型模拟的见解。

获取原文
获取原文并翻译 | 示例

摘要

Evapotranspiration cools the land surface by consuming a large fraction of the net radiative energy at the surface. In forested regions, trees actively control the rate of transpiration by modulating stomatal conductance in response to environmental conditions, and species with different stomatal dynamics can affect the atmosphere in distinct ways. Using principal component analysis (PCA) and Markov chain Monte Carlo (MCMC) parameter estimation with direct, tree-level measurements of water use, we show that Douglas-firs ( Pseudotsuga menziesii), a common evergreen needleleaf tree species in the Northern California Coast Range, decrease their transpiration sharply in the summer dry season in response to a dry root zone; and in contrast, broadleaf evergreen tree species, especially Pacific madrones (Arbutus menziesii), transpire maximally in the summer dry season because their transpiration is much less sensitive to a dry root zone and increases continually in response to increasing atmospheric evaporative demand. We scale up these tree-level observations to construct a bottom-up estimate of regional transpiration, and we use these regional estimates along with atmospheric models, one simple and one comprehensive, to quantify the potential impact of species transpiration differences on regional summertime climate. The atmospheric models suggest that these species differences in transpiration could affect the well-mixed atmospheric boundary layer temperature and humidity by 1-1.5 degrees C and 1 g/kg, respectively, and near-surface temperature and humidity by 1.5-2.5 degrees C and 2-3 g/kg, respectively. We further investigate the sensitivity of California climate to evapotranspiration by estimating the sensitivity of wind energy forecasts at a California wind farm to regional-scale perturbations in soil moisture using a regional atmospheric model. These tests show that forecasts at this particular farm are most sensitive to soil moisture in the Central Valley, and that changes in soil moisture on the order of previously-demonstrated errors in atmospheric reanalyses lead to wind energy forecast errors of 1-3 m/s, which can translate to differences in forecasted wind energy of 15-40% of a wind farm's maximum rated power.
机译:蒸发蒸腾通过消耗地面的大部分净辐射能来冷却陆地表面。在森林地区,树木通过响应环境条件调节气孔导度来主动控制蒸腾速率,并且具有不同气孔动态的物种会以不同的方式影响大气。使用主成分分析(PCA)和马尔可夫链蒙特卡洛(MCMC)参数估计,并在树上进行直接的用水量树测,我们显示道格拉斯冷杉(Pseudotsuga menziesii)是北加利福尼亚海岸常见的常绿针叶树种在夏季干旱季节,根据干旱的根系范围,迅速减少其蒸腾作用;相比之下,阔叶常绿树种,尤其是太平洋锦葵(Arbutus menziesii),在夏季干旱季节会最大程度地蒸腾,因为它们的蒸腾对干旱根区的敏感度要低得多,并且随着大气蒸发需求的增加而不断增加。我们按比例放大这些树级别的观测值,以构建自下而上的区域蒸腾量估算,并使用这些区域估算值以及一个简单的模型和一个综合的大气模型来量化物种蒸腾量差异对区域夏季气候的潜在影响。大气模型表明,这些蒸腾作用的物种差异可能分别影响混合均匀的大气边界层温度和湿度1-1.5摄氏度和1 g / kg,以及近地表温度和湿度1.5-2.5摄氏度和1.5摄氏度。分别为2-3 g / kg。我们通过使用区域大气模型估算加利福尼亚风电场的风能预报对土壤水分的区域尺度扰动的敏感性,进一步调查了加利福尼亚气候对蒸散的敏感性。这些测试表明,该特定农场的预报对中部山谷的土壤水分最敏感,并且土壤水分的变化按先前在大气再分析中表现出的误差顺序进行,导致风能预报误差为1-3 m / s ,这可以转化为风电场最大额定功率的15-40%的预测风能差异。

著录项

  • 作者

    Link, Percy Anne.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Atmospheric sciences.;Hydrologic sciences.;Botany.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号