首页> 外文学位 >Sliding-layer Laminates: A New Robotic Material Enabling Robust and Adaptable Undulatory Locomotion
【24h】

Sliding-layer Laminates: A New Robotic Material Enabling Robust and Adaptable Undulatory Locomotion

机译:滑动层层压板:一种新的机器人材料,可实现坚固且适应性强的波动运动

获取原文
获取原文并翻译 | 示例

摘要

New robotic devices will benefit from new materials capable of controllable and variable material properties. In this thesis, we present a new composite laminated material with periodically arranged patterns of stiff and soft regions, laminated together in a multi-layer configuration with a central sliding layer, which is called sliding-layer laminates (SLLs). We first build a model based on Euler-Bernoulli beam theory and compute the stiffness variation as a function of layer alignment; we then explore the design principles, manipulating the stiffness patterning on the SLLs using computational and experimental methods. The comparison theory and experiment for two design principles exhibited strong agreement with differences only in the soft SLLs. In experiment, we demonstrate an up to 6-7 folds stiffness variation based on the fixed end cantilever beam test and an infinite stiffness variation is observed from the theoretical model. The effective bending stiffness under different sliding positions of the central laminate varies continuously with sufficiently many intermediate stiffness states available. To demonstrate the applicability of SLLs for robot locomotion, we implemented our SLL as a variable compliance wing structure in a wind tunnel and a robotic fish tail in a water tank to observe both the fluttering (air flow) and flapping motions (water flow) under actively tunable stiffness. The result shows great changes in amplitude (wing tip) and force (tail body) generations which indicates strong applications for multi-functional material to be exploited in mobile robots to achieve high performance under changing working conditions. In the future we envision, that SLL can be further extended into multiple areas, including innovative fabrication methods, multi-convertible properties, and high-dimensioned structures which will promote low-cost, easy controlled variable compliance solution into more unknown fields. Representative of a whole type of smart materials with tunable physical properties, the development of the SLL is still in its infancy, and the future applications of such an integrated multi-functionality system can be broadly extended in assisting the construction of bio-inspired Robotics.
机译:新的机器人设备将受益于能够控制和改变材料特性的新材料。在本文中,我们提出了一种新的复合层压材料,该材料具有周期性排列的硬性区域和软性区域图案,以多层结构层压在一起,并具有中央滑动层,称为滑动层层压板(SLLs)。我们首先基于欧拉-伯努利梁理论建立模型,然后计算刚度变化与层对齐的关系。然后,我们探索设计原理,使用计算和实验方法在SLL上操纵刚度图案。两种设计原理的比较理论和实验仅在软SLL中表现出强烈的一致性和差异。在实验中,我们基于固定端悬臂梁试验证明了高达6-7倍的刚度变化,并且从理论模型中观察到了无限的刚度变化。在中央层压板的不同滑动位置下的有效弯曲刚度随着足够多的可用中间刚度状态连续变化。为了证明SLL在机器人运动中的适用性,我们将SLL实施为风洞中的可变顺应性机翼结构,并在水箱中安装了机器人鱼尾,以观察在水下航行时的飘动(气流)和拍打运动(水流)主动可调的刚度。结果表明,振幅(翼尖)和力(尾体)的产生发生了巨大变化,这表明在移动机器人中开发的多功能材料在强大的应用中得到了广泛应用,以在变化的工作条件下实现高性能。将来,我们预计SLL可以进一步扩展到多个领域,包括创新的制造方法,多可转换的属性以及高尺寸的结构,这些将把低成本,易于控制的可变法规遵从性解决方案推广到更多未知领域。作为一种具有可调节物理特性的智能材料的代表,SLL的发展仍处于起步阶段,这种集成多功能系统的未来应用可以广泛地扩展以协助构建受生物启发的机器人技术。

著录项

  • 作者

    Jiang, Mingsong.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Mechanical engineering.;Materials science.
  • 学位 M.S.
  • 年度 2018
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号