首页> 外文学位 >Stochastic Inversion of Seismic Data by Implementing Image Quilting to Build a Litho-facies Model for Reservoir Characterization of Delhi Field, LA
【24h】

Stochastic Inversion of Seismic Data by Implementing Image Quilting to Build a Litho-facies Model for Reservoir Characterization of Delhi Field, LA

机译:通过实施图像ing缝法建立地震相随机反演,建立路易斯安那德里油田储层表征的岩相模型

获取原文
获取原文并翻译 | 示例

摘要

In this research a new stochastic inversion approach along with an image reconstruction method is implemented to build a litho-facies model with a focus on Delhi Field, LA. The field is under CO2 injection as an enhanced oil recovery (EOR) method. This makes it critical to define the CO2 flow paths and flow baffles in higher resolution to plan for the EOR project. The algorithm starts at the well location by defining the litho-facies, using well logs, K-mean clustering method and core studies, and updated by the elastic properties distribution. The whole inversion approach is performed including multiple point statistics (MPS). The key element in the MPS algorithms is the training image. It is a conceptual model from the reservoir, which is built based on information from the reservoir regarding the depositional environment, structure, and any other information from the reservoir.;A 3D training image is built for the reservoir, but the inversion is performed on a 2D seismic line, therefore the training image is sub-sampled in the direction parallel to the direction of the 2D inline of interest. Then a square template is chosen of sizes of 5x5 and 7x7 are chosen and all the 2D planes are scanned with this template and the pattern database is constructed. The pattern database includes all the possible configurations of the litho-facies from the training image. At the next step, the search algorithm begins and searches for all the patterns from the database that have similar configuration to the litho- facies at the well location. A distance function is defined (here Manhattan distance) and the patterns providing the smallest distance with the patterns at the well location are stored. Multiple realizations of litho-facies from the stored patterns are generated.;The next step is to choose the realization, which provides the highest correlation or simi- larity to the subsurface. At this step, seismic forward modeling is implemented. Pseudo-logs of density and P-wave velocity are generated from the joint distribution of the properties at the well location that are conditioned to each litho-facies. Multiple realizations of pseudo-logs are generated (15 in this case) and synthetic seismic traces are created, having extracted the wavelet from the seismic volume. The realization that has the highest cross correlation is chosen as the litho-facies at the well location. To continue the algorithm away from the well location, an image reconstruction method that is called image quilting is implemented. This algorithm searches for similar patterns that have some overlapping criteria with the previously accepted pattern. The distance function is defined in a way to search for the overlapping grid nodes. The algorithm continues and the seismic forward modeling is im- plemented in a stochastic approach to find the best elastic properties and the corresponding litho-facies realization. Multiple realizations of litho-facies for the whole 2D inline is gener- ated and the maximum probability map of multiple realizations (ten in this case) is obtained as a representative of the litho-facies in the reservoir.;The structural and depositional complexity of Delhi Field, presents a heterogeneous reser- voir in the vertical and horizontal directions. Due to the fact that the field is under an EOR process, obtaining a detailed definition of litho-facies and flow paths distributions is of great importance. The method conducted in this research incorporates stochastic inversion and image reconstruction and provides a new methodology for constructing a detailed and high resolution litho-facies model by integrating multi-scale and multiple data types for complex and heterogeneous reservoirs like Delhi Field. Because of the stochastic characteristics of this methodology, equi-probable scenarios are generated and the most probable one is calculated.
机译:在这项研究中,采用一种新的随机反演方法以及一种图像重建方法来建立一个以路易斯安那州德里菲尔德为重点的岩相模型。该领域属于二氧化碳注入领域,属于提高采油率(EOR)的方法。因此,至关重要的是要以更高的分辨率定义CO2流动路径和导流板,以计划EOR项目。该算法通过定义测井相,使用测井,K-均值聚类方法和岩心研究,从井眼位置开始,并通过弹性属性分布进行更新。执行整个反演方法,包括多点统计(MPS)。 MPS算法中的关键元素是训练图像。它是来自储层的概念模型,该模型基于储层中有关沉积环境,构造的信息以及储层中的任何其他信息而建立。;为储层构建了3D训练图像,但在储层上进行了反演2D地震线,因此,在与感兴趣的2D在线的方向平行的方向上对训练图像进行了子采样。然后选择大小为5x5和7x7的正方形模板,并使用该模板扫描所有2D平面,并构建图案数据库。模式数据库包括来自训练图像的岩相的所有可能的配置。下一步,搜索算法开始,并从数据库中搜索与井位置的岩性具有相似配置的所有模式。定义距离函数(此处为曼哈顿距离),并存储与井位处的图样之间的距离最小的图样。从所存储的模式中生成岩相的多个实现。下一步是选择实现,它提供与地下最高的相关性或相似性。在此步骤中,将执行地震正演模拟。密度和纵波速度的伪对数是根据井位置处属性的联合分布而产生的,这些条件是针对每个岩相的。生成了伪对数的多种实现(在这种情况下为15),并创建了综合地震道,并从地震体中提取了小波。选择具有最高互相关的实现作为井位的岩相。为了使算法远离井眼位置,实施了一种称为图像缝的图像重建方法。该算法搜索与先前接受的模式具有某些重叠条件的相似模式。以搜索重叠网格节点的方式定义距离函数。该算法继续进行,并且以一种随机方法实施了地震正演模型,以找到最佳的弹性性质和相应的岩相实现。生成了整个2D管线内岩相的多种实现方法,并获得了多种实现方法的最大概率图(在本例中为10)作为储层岩相的代表。德里菲尔德(Delhi Field)在垂直和水平方向上提供了一个非均质的储层。由于该油田处于EOR过程中,因此获得岩相和流径分布的详细定义非常重要。这项研究中进行的方法结合了随机反演和图像重建,并为通过整合复杂和非均质储层(如德里油田)的多尺度和多种数据类型提供了一种构造详细而高分辨率的岩相模型的新方法。由于此方法的随机特性,因此生成了等概率方案,并计算了最可能的方案。

著录项

  • 作者

    Azizian, Mitra.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Geophysics.;Petroleum geology.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号