首页> 外文学位 >Uncertainty-integrated surrogate modeling for complex system optimization.
【24h】

Uncertainty-integrated surrogate modeling for complex system optimization.

机译:不确定性集成的替代模型,用于复杂的系统优化。

获取原文
获取原文并翻译 | 示例

摘要

Approximation models such as surrogate models provide a tractable substitute to expensive physical simulations and an effective solution to the potential lack of quantitative models of system behavior. These capabilities not only enable the efficient design of complex systems, but is also essential for the effective analysis of physical phenomena/characteristics in the different domains of Engineering, Material Science, Biomedical Science, and various other disciplines. Since these models provide an abstraction of the real system behavior (often a low-fidelity representative) it is important to quantify the accuracy and the reliability of such approximation models without investing additional expensive system evaluations (simulations or physical experiments). Standard error measures, such as the mean squared error, the cross-validation error, and the Akaike's information criterion however provide limited (often inadequate) information regarding the accuracy of the final surrogate model while other more effective dedicated error measures are tailored towards only one class of surrogate models. This lack of accuracy information and the ability to compare and test diverse surrogate models reduce the confidence in model application, restricts appropriate model selection, and undermines the effectiveness of surrogate-based optimization.;A key contribution of this dissertation is the development of a new model-independent approach to quantify the fidelity of a trained surrogate model in a given region of the design domain. This method is called the Predictive Estimation of Model Fidelity (PEMF). The PEMF method is derived from the hypothesis that "the accuracy of an approximation model is related to the amount of data resources leveraged to train the model". In PEMF, intermediate surrogate models are iteratively constructed over heuristic subsets of sample points. The median and the maximum errors estimated over the remaining points are used to determine the respective error distributions at each iteration. The estimated modes of the error distributions are represented as functions of the density of intermediate training points through nonlinear regression, assuming a smooth decreasing trend of errors with increasing sample density. These regression functions are then used to predict the expected median and maximum errors in the final surrogate models. It is observed that the model fidelities estimated by PEMF are up to two orders of magnitude more accurate and statistically more stable compared to those based on the popularly-used leave-one-out cross-validation method, when applied to a variety of benchmark problems.;By leveraging this new paradigm in quantifying the fidelity of surrogate models, a novel automated surrogate model selection framework is also developed. This PEMF-based model selection framework is called the Concurrent Surrogate Model Selection (COSMOS). COSMOS, unlike existing model selection methods, coherently operates at all the three levels necessary to facilitate optimal selection, i.e., (1) selecting the model type, (2) selecting the kernel function type, and (3) determining the optimal values of the typically user-prescribed parameters. The selection criteria that guide optimal model selection are determined by PEMF and the search process is performed using a MINLP solver. The effectiveness of COSMOS is demonstrated by successfully applying it to different benchmark and practical engineering problems, where it offers a first-of-its-kind globally competitive model selection.;In this dissertation, the knowledge about the accuracy of a surrogate estimated using PEMF is applied to also develop a novel model management approach for engineering optimization. This approach adaptively selects computational models (both physics-based models and surrogate models) of differing levels of fidelity and computational cost, to be used during optimization, with the overall objective to yield optimal designs with high-fidelity function estimates at a reasonable computational expense. In this technique, a new adaptive model switching (AMS) metric defined to guide the switching of model from one to the next higher fidelity model during the optimization process. The switching criterion is based on whether the uncertainty associated with the current model output dominates the latest improvement of the relative fitness function, where both the model output uncertainty and the function improvement (across the population) are expressed as probability distributions. This adaptive model switching technique is applied to two practical problems through Particle Swarm Optimization to successfully illustrate: (i) the computational advantage of this method over purely high-fidelity model-based optimization, and (ii) the accuracy advantage of this method over purely low-fidelity model-based optimization.;Motivated by the unique capabilities of the model switching concept, a new model refinement approach is also developed in this dissertation. The model refinement approach can be perceived as an adaptive sequential sampling approach applied in surrogate-based optimization. Decisions regarding when to perform additional system evaluations to refine the model is guided by the same model-uncertainty principles as in the adaptive model switching technique. The effectiveness of this new model refinement technique is illustrated through application to practical surrogate-based optimization in the area of energy sustainability.
机译:诸如替代模型之类的近似模型为昂贵的物理模拟提供了易于处理的替代方案,并为可能缺乏系统行为的定量模型提供了有效的解决方案。这些功能不仅可以有效地设计复杂的系统,而且对于有效分析工程,材料科学,生物医学和其他各个学科领域中的物理现象/特征也至关重要。由于这些模型提供了真实系统行为的抽象(通常是低保真度的代表),因此在不投资额外的昂贵系统评估(模拟或物理实验)的情况下,量化此类近似模型的准确性和可靠性非常重要。但是,标准误差度量(例如均方误差,交叉验证误差和Akaike信息标准)提供的有关最终替代模型准确性的信息有限(通常不充分),而其他更有效的专用误差度量则仅针对一种替代模型的类别。这种缺乏准确性的信息以及无法比较和测试各种替代模型的能力降低了对模型应用的信心,限制了适当模型的选择,并破坏了基于替代的优化的有效性。独立于模型的方法来量化设计域给定区域中训练的代理模型的保真度。这种方法称为模型保真度的预测估计(PEMF)。 PEMF方法源自以下假设:“近似模型的准确性与用于训练模型的数据资源量有关”。在PEMF中,中间代理模型是在样本点的启发式子集上迭代构建的。在剩余点上估计的中值误差和最大误差用于确定每次迭代的相应误差分布。误差分布的估计模式通过非线性回归表示为中间训练点密度的函数,并假设误差随着样本密度的增加而平滑降低。然后将这些回归函数用于预测最终替代模型中的预期中位数和最大误差。可以观察到,当将PEMF估计的模型保真度应用于各种基准问题时,与基于流行的留一法交叉验证方法的保真度相比,其保真度要高出两个数量级,并且在统计上更加稳定。通过利用这种新的范例来量化替代模型的保真度,还开发了一种新颖的自动替代模型选择框架。这种基于PEMF的模型选择框架称为并行代理模型选择(COSMOS)。与现有模型选择方法不同,COSMOS在促进最佳选择所必需的所有三个级别上连贯地进行操作,即(1)选择模型类型,(2)选择核函数类型,以及(3)确定模型的最佳值。通常是用户指定的参数。 PEMF确定指导最佳模型选择的选择标准,并使用MINLP求解器执行搜索过程。通过成功将COSMOS应用于不同的基准和实际工程问题,证明了COSMOS的有效性,它提供了首创的全球竞争模型选择。被用来开发一种用于工程优化的新型模型管理方法。这种方法自适应地选择要在优化过程中使用的保真度和计算成本水平不同的计算模型(基于物理学的模型和替代模型),其总体目标是以合理的计算费用产生具有高保真度函数估计的最优设计。在这项技术中,定义了一种新的自适应模型切换(AMS)度量,以指导在优化过程中将模型从一个切换到下一个更高保真度的模型。切换标准基于与当前模型输出相关的不确定性是否主导相对适应度函数的最新改进,其中模型输出不确定性和函数改进(遍及总体)均表示为概率分布。通过粒子群优化技术将这种自适应模型切换技术应用于两个实际问题,以成功地说明:(i)该方法相对于纯粹基于高保真模型的优化具有计算优势,并且(ii)此方法相对于基于纯模型的优化具有准确性优势基于模型的低保真优化;受模型切换概念的独特功能的激励,本文还开发了一种新的模型细化方法。可以将模型优化方法视为在基于代理的优化中应用的自适应顺序采样方法。关于何时执行其他系统评估以精炼模型的决策,遵循与自适应模型转换技术相同的模型不确定性原则。通过将其应用到能源可持续性领域中基于替代方案的实际优化中,可以说明这种新模型细化技术的有效性。

著录项

  • 作者

    Mehmani, Ali.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Mechanical engineering.;Computer science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 283 p.
  • 总页数 283
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号