首页> 外文学位 >Revealing Hidden Biology by Identifying Ligands for the ykkC Orphan Riboswitches
【24h】

Revealing Hidden Biology by Identifying Ligands for the ykkC Orphan Riboswitches

机译:通过识别ykkC孤儿核糖开关的配体来揭示隐藏的生物学

获取原文
获取原文并翻译 | 示例

摘要

Riboswitches are non-coding RNAs that bind a small molecule or ion ligand to regulate gene expression. The cognate ligands have been identified for dozens of riboswitch classes, but the ligand identities are unknown for many promising structured RNA motifs, which are known as orphan riboswitches. The ykkC RNA motif was discovered over a decade ago by using bioinformatics and, until recently, was the longest standing orphan riboswitch candidate. The cognate ligand of ykkC riboswitches remained unsolved mostly due to the seemingly disparate set of genes under its regulatory control. These genes commonly code for proteins annotated as urea carboxylases, multi-drug efflux transporters, sulfonate/nitrate/carbonate transporters, arginases, de novo purine biosynthesis enzymes, and branched-chain amino acid enzymes.;My colleagues found that guanidine induces expression of a riboswitch- lacZ reporter gene fusion in a large screen of various growth conditions. They collected additional evidence implicating guanidine as the elusive ligand for ykkC riboswitches by demonstrating that reporter gene expression is activated at a lower concentration of guanidine when the ykkCD operon is knocked out in B. subtilis. These gene products, which likely function as a selective guanidine transporter, are commonly associated with this riboswitch class. I used in-line probing as an in vitro biochemical approach to further evaluate guanidine as the cognate ligand and found that some ykkC motif RNAs from distantly related bacteria become more structured at specific sites in a dose-dependent manner upon the addition of guanidine.;I subsequently determined that representatives of two other RNA motifs, called mini-ykkC and ykkC-III, also bind guanidine in vitro. All three guanidine-binding RNA motifs have similar downstream gene associations, and therefore these three distinct classes of RNA represent the guanidine-I, -II and -III riboswitch classes. I performed experiments on the protein family whose expression is most commonly regulated by guanidine riboswitches and demonstrated that these proteins are involved in breaking down guanidine into non-toxic molecules. Although the biological relevance of guanidine is still poorly understood, the wide distribution of these riboswitches and the genes they control suggest that free guanidine is a greatly underappreciated metabolite.;While the majority of ykkC RNAs selectively bind guanidine, I found that the remaining 30% of ykkC RNAs do not bind guanidine and carry nucleotide changes in their binding pockets to allow recognition of a different ligand. I analyzed the consensus sequence and structure models as well as the downstream gene associations for these variant ykkC RNAs, which revealed at least four distinct candidate riboswitch classes in addition to the guanidine-I riboswitch class. I have validated the cognate ligands for two of these variant ykkC riboswitch classes, both of which are RNA nucleotide derivatives.;I discovered that the first variant class selectively binds guanosine tetraphosphate (ppGpp), a bacterial alarmone derived from the ribonucleotide GTP. The ppGpp riboswitch class primarily regulates transcription of genes involved in branched-chain amino acid biosynthesis. Shortly thereafter, I determined that the second of these variant ykkC riboswitch classes binds a similar molecule called phosphoribosyl pyrophosphate (PRPP), the initial substrate for the biosynthesis of RNA monomers, to regulate the expression of genes for purine nucleotide biosynthesis. Members of these newly validated riboswitch classes frequently form tandem arrangements between and other RNA-based regulatory elements. I demonstrated that these tandem arrangements accomplish more complex gene control systems than a typical singlet riboswitch system. The existence of sophisticated RNA regulatory systems that respond to a widespread RNA-derived signaling molecule and a fundamental RNA biosynthetic precursor supports the hypothesis that RNA World organisms could manage a complex metabolic state without the assistance of protein factors.
机译:核糖开关是结合小分子或离子配体以调节基因表达的非编码RNA。已经鉴定出数十种核糖开关类别的同源配体,但是对于许多有前途的结构化RNA基序,即孤立的核糖开关,其配体身份是未知的。 ykkC RNA基序是在十年前通过使用生物信息学发现的,直到最近,它是站立时间最长的孤儿核糖开关候选对象。 ykkC核糖开关的同源配体仍未解决,这主要是由于在其调控控制下看似完全不同的一组基因。这些基因通常编码注释为尿素羧化酶,多药外排转运蛋白,磺酸盐/硝酸盐/碳酸盐转运蛋白,精氨酸酶,从头嘌呤生物合成酶和支链氨基酸酶的蛋白质。可以在各种生长条件的大屏幕中进行riboswitch-lacZ报告基因融合。他们通过证明当在枯草芽孢杆菌中敲除ykkCD操纵子时,报告基因的表达在较低浓度的胍基浓度下被激活,从而收集了其他证据,表明胍是ykkC核糖开关的易失配体。这些可能充当选择性胍转运蛋白的基因产物通常与此核糖开关类别相关。我使用在线探测作为一种体外生化方法,进一步评估了胍作为同源配体,发现在加入胍后,来自远缘细菌的某些ykkC基序RNA在特定部位的结构变得更加剂量依赖性。随后,我确定了另外两个称为mini-ykkC和ykkC-III的RNA基序的代表在体外也结合了胍。所有三个与胍结合的RNA基序都具有相似的下游基因关联,因此这三个不同的RNA类代表胍-I,-II和-III核糖开关类。我对蛋白质家族进行了实验,该蛋白质家族的表达最常受胍核糖开关调节,并证明这些蛋白质参与将胍分解为无毒分子。尽管对胍的生物学相关性仍知之甚少,但这些核糖开关及其控制的基因的广泛分布表明游离胍是一种大大被低估的代谢物。;虽然大多数ykkC RNA选择性结合胍,但我发现其余30%的ykkC RNA不与胍结合,并且在其结合口袋中携带核苷酸变化,从而可以识别不同的配体。我分析了这些变异ykkC RNA的共有序列和结构模型,以及下游基因的关联,除了胍基I核糖开关类别外,还揭示了至少四个不同的候选核糖开关类别。我已经验证了这些变体ykkC核糖开关类别中的两个的同源配体,这两个都是RNA核苷酸衍生物。我发现第一个变体类别选择性地结合了鸟苷四磷酸(ppGpp),这是一种从核糖核苷酸GTP衍生的细菌警报蛋白。 ppGpp核糖开关类别主要调节支链氨基酸生物合成中涉及的基因的转录。此后不久,我确定这些变种的ykkC核糖开关类别中的第二种与称为磷酸核糖焦磷酸(PRPP)的相似分子结合,后者是RNA单体生物合成的初始底物,可调节嘌呤核苷酸生物合成基因的表达。这些新验证的核糖开关类别的成员经常在其他基于RNA的调控元件之间形成串联排列。我证明,与典型的单线态核糖开关系统相比,这些串联排列完成了更为复杂的基因控制系统。复杂的RNA调节系统的存在对广泛的RNA衍生的信号分子和基本的RNA生物合成前体作出反应,支持以下假设:RNA世界生物无需蛋白质因子的帮助即可处理复杂的代谢状态。

著录项

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Biochemistry.;Microbiology.;Molecular biology.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 299 p.
  • 总页数 299
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号