首页> 外文学位 >Contributions to understanding the high speed machining effects on aeronautic part surface integrity.
【24h】

Contributions to understanding the high speed machining effects on aeronautic part surface integrity.

机译:有助于理解高速加工对航空零件表面完整性的影响。

获取原文
获取原文并翻译 | 示例

摘要

To remain competitive, the aeronautic industry has increasing requirements for mechanical components and parts with high functional performance and longer in-service life. The improvement of the in-service life of components can be achieved by mastering and optimizing the surface integrity of the manufactured parts. Thus, the present study attempted to investigate, experimentally and theoretically, the tool/work material interactions on part surface integrity during the machining of aluminium alloys and hardened materials (low alloy steels) using orthogonal machining tests data. The studied materials are two aluminum alloys (6061-T6 and 7075-T651) and AISI 4340 steel. The AISI 4340 steel was machined after been induction heat treated to 58-60 HRC. These materials were selected in an attempt to provide a comprehensive study for the machining of metals with different behaviours (ductile and hard material).;The proposed approach is built on three steps. First, we proposed a design of experiment (DOE) to analyse, experimentally, the chip formation and the resulting surface integrity during the high speed machining under dry condition. The orthogonal cutting mode, adopted in these experiments, allowed to explore, theoretically, the effects of technological (cutting speed and feed) and physical (cutting forces, temperature, shear angle, friction angle, and length Contact tool/chip) parameters on the chip formation mechanisms and the machined surface characteristics (residual stress, plastic deformation, phase transformation, etc.). The cutting conditions were chosen while maintaining a central composite design (CCD) with two factors (cutting speed and feed per revolution).;For the aluminum 7075-T651, the results showed that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles are the main causes of the machined surface damage. The BUE formation increases with the cutting feed while the increase of the cutting speed reduces it and promotes the BUL formation on the rake face of the cutting tool.;We also investigated the effects of cutting conditions on surface integrity of induction hardened AISI 4340 steel (58-60 HRC) using mixed ceramic inserts. This investigation was motivated by the fact that excessive induction hardening treatment resulted in deep hardened layers (2 mm) with related low compressive residual stresses which may affect the performance of the induction heat treated parts. A judicious selection of the finishing process that eventually follows the surface treatment may overcome this inconvenient. The results showed that the machining process induces significant compressive residual stresses at and below the machined surface. The residual stress distribution is affected by the cutting feed and the cutting speed.;The first step of this study (experimental study) showed that the surface integrity is closely related to the mechanisms of chip formation. These mechanisms, which are the origin of thermo-mechanical loads, can be quantified by two main parameters: the cutting forces and temperatures generated during machining. Therefore, any attempt to predict the characteristics of the machined surface integrity (residual stresses, transformation phase, etc.), should be, necessarily, involve the prediction of cutting forces and temperature generated during the machining. In this study, we opt out to develop a model for predicting cutting forces and temperatures based on a constitutive equation of the work material that takes into account the effect of strain, strain rate, and temperature. Therefore, the second step of this approach has focused on the identification of the Marusich constitutive equation in order to model the behavior of the materials in high-speed machining.;Finally, the material models which were identified in the previous step were thereafter implemented in a developed analytical model for predicting cutting forces and temperatures (the third step of the approach). We tested only the coefficients obtained by the Oxley temperature model, due to their better performance in predicting the cutting forces in FEM compared to those obtained by model Loewen and Shaw ones.;Through this experimental and theoretical study, we were able to emphasize the physical mechanisms that govern the chip formation and their effects on the machined surface integrity of two classes of metals (ductile and hard). The proposed approaches can be used in the optimization of the cutting conditions in order to control the surface integrity on the machined parts. Furthermore, the results of this study have been validated for feed rates (10 to 50 ?m) comparable to the cutting edge radius (5 and 25 ?m) used in the experiments. Thus, the developed models (analytical and finite element) can be extended for studying and modeling the conventional machining processes (turning, milling, and drilling) and nonconventional ones such as the micro-machining process. (Abstract shortened by UMI.).
机译:为了保持竞争力,航空业对功能部件性能较高且使用寿命较长的机械零部件的要求不断提高。通过掌握和优化所制造零件的表面完整性,可以提高组件的使用寿命。因此,本研究尝试使用正交加工测试数据,在实验和理论上研究铝合金和硬化材料(低合金钢)加工过程中零件表面完整性上的工具/工作材料相互作用。研究的材料是两种铝合金(6061-T6和7075-T651)和AISI 4340钢。 AISI 4340钢经过感应热处理至58-60 HRC之后进行了机械加工。选择这些材料的目的是为了为加工具有不同性能的金属(延性材料和硬质材料)提供全面的研究。建议的方法基于三个步骤。首先,我们提出了一种实验设计(DOE),以实验方式分析干燥条件下高速加工过程中的切屑形成和所产生的表面完整性。在这些实验中采用的正交切削模式,从理论上探讨了工艺参数(切削速度和进给)和物理参数(切削力,温度,剪切角,摩擦角和长度接触工具/切屑)的影响。切屑形成机理和加工表面特性(残余应力,塑性变形,相变等)。在选择切削条件的同时要保持具有两个因素(切削速度和每转进给量)的中央复合设计(CCD)。对于铝7075-T651,结果表明BUE的形成以及刀刃与刀刃之间的相互作用。富铁金属间化合物颗粒是机加工表面损坏的主要原因。 BUE的形成随切削进给而增加,而切削速度的增加则降低了切削并促进了切削刀具前刀面上的BUL形成。;我们还研究了切削条件对感应淬火AISI 4340钢表面完整性的影响( 58-60 HRC)使用混合陶瓷插件。这项研究的动机是,过度的感应淬火处理会导致深的硬化层(2毫米),而相关的低压缩残余应力可能会影响感应热处理零件的性能。明智地选择最终在表面处理之后进行的精加工工艺可以克服这种不便之处。结果表明,机加工过程在机加工表面及其下方产生明显的压缩残余应力。残余应力分布受切削进给量和切削速度的影响。研究的第一步(实验研究)表明,表面完整性与切屑形成的机理密切相关。这些机制是热机械负载的起源,可以通过两个主要参数来量化:切削力和加工过程中产生的温度。因此,任何预测加工表面完整性特征(残余应力,相变相位等)的尝试都必然涉及对切削力和在加工过程中产生的温度的预测。在这项研究中,我们选择基于工作材料的本构方程,开发一种预测切削力和温度的模型,该方程考虑了应变,应变率和温度的影响。因此,该方法的第二步着眼于识别Marusich本构方程,以便对高速加工中的材料行为进行建模。最后,在上一步中确定的材料模型随后在开发用于预测切削力和温度的分析模型(方法的第三步)。我们只测试了Oxley温度模型获得的系数,因为与用Loewen和Shaw模型获得的系数相比,它们在FEM中预测切削力的性能更好。通过此实验和理论研究,我们能够强调物理控制切屑形成及其对两类金属(延性和硬质)机械加工表面完整性的影响的机理。所提出的方法可用于优化切削条件,以控制加工零件的表面完整性。此外,该研究的结果已经得到了与实验中使用的切削刃半径(5和25μm)相当的进给速度(10至50μm)的验证。因此,可以扩展已开发的模型(分析和有限元),以研究和建模常规的加工过程(车削,铣削)。以及钻孔)和非常规方法(例如微加工过程)。 (摘要由UMI缩短。)。

著录项

  • 作者

    Jomaa, Walid.;

  • 作者单位

    Ecole de Technologie Superieure (Canada).;

  • 授予单位 Ecole de Technologie Superieure (Canada).;
  • 学科 Mechanical engineering.;Materials science.;Aerospace engineering.
  • 学位 D.Eng.
  • 年度 2015
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号